A SEMIOTIC PERSPECTIVE ON LEARNING MATHEMATICS WITH DIGITAL AND ANALOGUE MATERIAL: PRIMARY SCHOOL CHILDREN ACTING ON STATISTICAL DIAGRAMS
DOI:
https://doi.org/10.52041/serj.v22i2.420Keywords:
Statistics education research, Diagrammatic reasoning, Digital and analogue material, Primary school, Early childhood educationAbstract
This paper focuses on two third-grade students’ work on the same statistical question whereby one acts with analogue material and the other with TinkerPlotsTM. The aim of the research was to find out whether different material influences the actions and, thus, possibly the mathematical interpretations of the learners. To investigate this research interest, a semiotic perspective on mathematical learning according to Peirce was adopted. Based on this perspective, a modification of Mayring’s context analysis was made, which allowed the analysis of actions to reconstruct the learners’ diagram interpretations. From the analyses, there is evidence that some materials can shorten actions and can automatically establish mathematical relationships and, thus, affect the mathematical interpretations of the learners. At times, however, other actions on different materials can also lead to the reconstruction of the same diagram interpretations. Using these insights, implications for mathematics teaching practice were formulated to assist teachers in selecting materials for designing learning environments to support early statistical thinking.
References
Andrén, M. (2010). Children‘s gestures from 18 to 30 month. [Doctoral dissertation, Lund University]. https://lucris.lub.lu.se/ws/files/3902148/4588138.pdf
Bakker, A. (2004). Reasoning about shape as a pattern in variability. Statistics Education Research Journal 3(2), 64–83. https://doi.org/10.52041/serj.v3i2.552
Bakker, A., & Hoffmann, M. (2005). Diagrammatic reasoning as the basis for developing concepts: a semiotic analysis of students’ learning about statistical distribution. Educational Studies in Mathematics, 60, 333–358. https://doi.org/10.1007/s10649-005-5536-8
Ben-Zvi, D. (2018). Foreword. In A. Leavy, M. Meletiou-Mavrotheris, & E. Paparistodemou (Eds.), Statistics in early childhood and primary education: Supporting early statistical and probabilistic thinking (pp. vii–viii). Springer. https://doi.org/10.1007/978-981-13-1044-7
Ben-Zvi, D., & Garfield, J. (2004). Statistical literacy, reasoning, and thinking: Goals, definitions, and challenges. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 3–16). Kluwer Academic Publisher. https://doi.org/10.1007/1-4020-2278-6_1
Billion, L. (2021a). Reconstruction of the interpretation of geometric diagrams of primary school children based on actions on various materials: A semiotic perspective on actions. International Electronic Journal of Mathematics Education, 16(3), Article em0650. https://doi.org/10.29333/iejme/11068
Billion, L. (2021b). The usage of inscriptions: Mathematical experiences of learners working with diagrams. In J. Novotná & H. Moravá (Eds.), Proceedings of the international symposium elementary mathematics teaching. Broadening experiences in elementary school mathematics (pp. 82–92). https://semt.cz/proceedings/semt-21.pdf
Billion, L. (2022). Semiotic analyses of actions on digital and analogue material when sorting data in primary school. Eurasia Journal of Mathematics, Science and Technology Education, 18(7), Article em2126. https://doi.org/10.29333/ejmste/12138
Billion, L. (2023). The reconstruction of mathematical interpretations: Actions of primary school children on digital and analogue material. Mathematics education for global sustainability. Proceedings of the 46th Conference of the International Group for the Psychology of Mathematics Education, Haifa.
Billion, L., & Vogel, R. (2021). Material as an impulse for mathematical actions in primary school: A semiotic perspective on a geometric example. In M. Inprasitha, N. Changsri & N. Boonsena (Eds.), Mathematics education in the 4th industrial revolution: Thinking skills for the future. Proceedings of the 44th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 93–101). https://www.igpme.org/wp-content/uploads/2022/04/Volume-2_final.pdf
Chen, C-L., & Herbst, P. (2012). The interplay among gestures, discourse, and diagrams in students’ geometrical reasoning. Educational Studies in Mathematics, 83, 285–307. https://doi.org/10.1007/s10649-012-9454-2
Dörfler, W. (2006) Inscriptions as objects of mathematical activities. In J. Maaz & W. Schlögelmann (Eds.), New mathematics education research and practice (pp. 97–111). Sense Publishers. https://doi.org/10.1163/9789087903510_011
Dörfler, W. (2015). Abstrakte objekte in der mathematik. In G. Kadunz (Ed.), Semiotische perspektiven auf das lernen von mathematik. Springer. https://doi.org/10.1007/978-3-642-55177-2
Friel, S., Curcio, R., & Bright, G. (2001). Making sense of graphs: Critical factors influencing comprehension of instructional implications. Journal of Research in Mathematics Education, 32(2), 124–158. https://doi.org/10.2307/749671
Frischemeier, D. (2018). Statistisches denken im mathematikunterricht der primarstufe mit digitalen werkzeugen entwickeln: Über lebendige statistik und datenkarten zur software TinkerPlotsTM. In B. Brandt & H. Dausend (Eds.), Digitales lernen in der grundschule: Fachliche lernprozesse anregen (pp. 73–102). Waxmann.
Frischemeier, D. (2020). Building statisticians at an early age: Statistical projects exploring meaningful data in primary school. Statistics Education Research Journal, 19(1), 39–56. https://doi.org/10.52041/serj.v19i1.118
Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Teaching and Learning, 1(2), 155–177. https://doi.org/10.1207/s15327833mtl0102_4
Gravemeijer, K. (2002). Emergent modeling as the basis for an instructional sequence on data analysis. In B. Phillips (Ed.), Developing a statistically literate society The Sixth International Conference on Teaching Statistics (ICOTS6), Cape Town, South Africa. https://iase-web.org/documents/papers/icots6/2d5_grav.pdf?1402524960
Harradine, A., & Konold, C. (2006). How representational medium affects the data displays students make. In A. Rossman & B. Chance (Eds.), Working cooperatively in statistics education. Seventh International Conference on Teaching Statistics (ICOTS7), Salvador, Brazil. https://iase-web.org/documents/papers/icots7/7C4_HARR.pdf?1402524965
Harrison, S. (2018). The impulse to gesture: Where language, minds, and bodies intersect. Cambridge University Press.
Hoffmann, M. (2006). What is a “semiotic perspective”, and what could it be? Some comments on the contributions to this special issue. Educational Studies in Mathematics, 61, 279–291. https://doi.org/10.1007/s10649-006-1456-5
Hoffmann, M. (2010). Diagrams as scaffolds for abductive insights. In Proceedings of the twenty-fourth AAAI-10 conference on artificial intelligence, Atlanta, Georgia. (pp. 42–49).
Huth, M. (2022). Handmade diagrams: Learners doing math by using gestures. In J. Hodgen, E. Geraniou, G. Bolondi & F. Ferretti (Eds.), Proceedings of the 12th Congress of the European Society for Research in Mathematics Education (CERME12). https://hal.archives-ouvertes.fr/hal-03745964
Kadunz, G. (2016). Geometry, a means of argumentation. In A. Sáenz-Ludlow & G. Kadunz (Eds.), Semiotics as a tool for learning mathematics: How to describe the construction, visualisation, and communication of mathematical concepts (pp. 25–42). Sense Publishers. https://doi.org/10.1007/978-94-6300-337-7
Kendon, A. (1984). Did gesture have the happiness to escape the curse at the confusion of babel? In A. Wolfgang (Ed.), Nonverbal behaviour. Perspectives applications intercultural insights (pp. 75–114). Hogrefe.
Konold, C., & Miller, C. (2011). TinkerPlots 2.0. Key Curriculum Press.
Leavy, A., Meletiou-Mavrotheris, M., & Paparistodemou, E. (2018). Preface. In A. Leavy, M. Meletiou-Mavrotheris, & E. Paparistodemou (Eds.), Statistics in early childhood and primary education: Supporting early statistical and probabilistic thinking (pp. ix–xxii). Springer. https://doi.org/10.1007/978-981-13-1044-7
Mayring, P. (2014). Qualitative content analysis: Theoretical foundation, basic procedures and software solutions. Social Science Open Access Repository. https://nbn-resolving.org/urn:nbn:de:0168-ssoar-395173
Peirce, C. S. (1931-1935). Collected papers of Charles Sanders Peirce (Volumes I-VI), C. Hartshorne & P. Weiss (Eds.). Harvard University Press.
Peirce, C. S. (1976). 18 (PAP) (293): Prolegomena for an apology to pragmatism. In C. Eisele (Ed.), The new elements of mathematics: Volume 4 Mathematical philosophy () (pp. 313–330). De Gruyter. https://doi.org/10.1515/9783110805888.313
Schreiber, C. (2013). Semiotic processes in chat-based problem-solving situations. Educational Studies Mathematics, 82, 51–73. https://doi.org/10.1007/s10649-012-9417-7
Shapiro, S. (1997). Philosophy of mathematics: Structure and ontology. Oxford University Press. https://doi.org/10.1093/0195139305.001.0001
Villamor, G., Willis, D., & Wroblewski, L. (2010). Touch gesture reference guide. https://www.lukew.com/ff/entry.asp?1071
Vogel, R. (2017). "wenn man da von oben guckt sieht das aus als ob…" Die, Dimensionslücke‘ zwischen zweidimensionaler Darstellung dreidimensionaler Objekte im multimodalen Austausch. In M. Beck & R. Vogel (Eds.), Geometrische aktivitäten und gespräche von kindern im blick qualitativen forschens. Mehrperspektivische ergebnisse aus den projekten erStMaL und MaKreKi (pp. 61–75). Waxmann.
Vogel, R., & Huth, M. (2020). Modusschnittstellen in mathematischen Lernprozessen. Handlungen am Material und Gesten als diagrammatische Tätigkeit. In G. Kadunz (Ed.), Zeichen und sprache im mathematikunterricht: Semiotik in theorie und praxis (pp. 215–255). Springer Spektrum. https://doi.org/10.1007/978-3-662-61194-4