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ABSTRACT 

 

Most current statistics courses include some instruction relevant to causal inference. Whether this 

instruction is incorporated as material on randomized experiments or as an interpretation of 

associations measured by correlation or regression coefficients, the way in which this material is 

presented may have important implications for understanding causal inference fundamentals. 

Although the connection between study design and the ability to infer causality is often described 

well, the link between the language used to describe study results and causal attribution typically 

is not well defined. The current study investigates this relationship experimentally using a sample 

of students in a statistics course at a large western university in the United States. It also provides 

(non-experimental) evidence about the association between statistics instruction and the ability to 

understand appropriate causal attribution. The results from our experimental vignette study suggest 

that the wording of study findings impacts causal attribution by the reader, and, perhaps more 

surprisingly, that this variation in level of causal attribution across different wording conditions 

seems to pale in comparison to the variation across study contexts. More research, however, is 

needed to better understand how to tailor statistics instruction to make students sufficiently wary of 

unwarranted causal interpretation.  

 

Keywords: Statistics education research; Causal inference; Causal language; Introductory 

statistics; Statistics instruction 
 

1. INTRODUCTION 

 

One of the most challenging aspects of teaching statistics is helping students understand how to 

interpret the results of statistical procedures and to effectively communicate this understanding to others 

(Ben-Zvi & Garfield, 2004). This involves a combination of mathematical knowledge, logical 

reasoning, and, typically, understanding of the context such as study details and some knowledge of the 

subject matter. It also requires precise use of language. Even simple data summaries such as measures 

of central tendency (mean, median, mode) have subtleties that necessitate careful wording if the 

audience is to comprehend the practical implications (Cooper & Shore, 2008; Ismail & Chan, 2015).  
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The challenge in accurately conveying statistical results is amplified when the potential exists for 

results to be interpreted causally. As a result, various communication approaches have evolved over the 

years to guard against unwarranted causal interpretations. Arguably, the most common strategy is to 

use the word “association” in situations where there is inadequate evidence for causal attribution. These 

wording choices, however, may be insufficient to prevent causal attribution by the reader. One reason 

for this is that there may be other linguistic signals in such a description that would still imply a causal 

connection. Another is that, even with careful wording, there is a strong proclivity in human reasoning 

towards causal attribution (e.g., Kahneman, 2011). Thus, it may be necessary to take extra precautions 

when conveying study results involving associations between variables.  

In this study, we investigate whether the wording of study results impacts causal attribution through 

an experimental vignette study conducted in a large-enrollment introductory statistics course at a large 

Western university in the United States. Our findings reveal that the language used when relaying study 

results does indeed affect readers’ confidence in the causal relationship between variables. Our findings 

also highlight startling variation in the extent to which results are interpreted causally based on the 

hypothetical study contexts explored, independently of the wording. These findings suggest potential 

changes in how we should teach students to interpret and communicate results and provide a starting 

point for future exploration in this area. 

This paper begins with a review of relevant literature and then proceeds to discuss the sample and 

the experimental treatment manipulations and measures. Findings from the experiment are then 

presented and their implications discussed. 

 

2. BACKGROUND 

 

Why is it important for students to be able to distinguish between study results that provide evidence 

for a causal relationship versus those that are merely associational? The primary reason is that causal 

relationships can provide guidance for decision making in ways that associational evidence does not. 

For instance, if we know that there is an association between using an educational tool and subsequent 

test scores, it might be interesting to try to explain why that association is present. Are more prepared 

or confident students more likely to adopt the tool? Or is the tool adding value on its own? If instead 

we knew the relationship were causal, then we might be moved to adopt this tool in the classroom. If 

we adopted the tool for more general use based on merely a positive association and the causal effect 

was in fact zero or negative, then this would be a waste of time and money and other scarce resources 

(e.g., teacher goodwill) in the educational system. 

There are several challenges to effectively communicating whether research findings warrant causal 

interpretation. We start by providing a more precise definition of causal effects and then discuss the 

challenges of communicating these properly. We close this section with a description of current 

teaching practices in introductory statistics classrooms around causal inference and a discussion of 

related work. 

 

2.1.  HOW ARE CAUSAL EFFECTS DEFINED? 

 

While philosophers still debate the definition and meaning of causality, most of the world of 

statistics has converged on a counterfactual interpretation such as the one first proposed by Hume 

(1748), which has been further elaborated by other philosophers, most notably by Lewis (1973a; 

1973b).1 The counterfactual framework presents causal effects as a comparison between what was 

observed to happen and what would have happened in a counterfactual world with a different treatment 

regime. This type of counterfactual interpretation now pervades science and has strongly influenced the 

standards of evidence required in most fields as well as institutions focused on policy, practice, and 

regulation. For instance, this paradigm is implicit in the Federal Drug Administration  requirement of 

 
1 Although Causal Directed Acyclic Graphs (DAGs), popularized for causal inference by Pearl (2009) are also 

widely used for causal inference, we consider those to have a counterfactual interpretation as well given that 

scholars (Richardson & Robins, 2013) have demonstrated a one-to-one mapping between the DAG framework 

and the potential outcomes framework (Rubin, 1978) that formalizes counterfactuals in statistics. 
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evidence from randomized experiments for approval of new drugs and medical devices (Fleming et al., 

2017). 

The field of statistics has formalized the idea of the counterfactual state in statistical notation 

referred to as potential outcomes (Holland, 1986; Rubin, 1978). The establishment of potential outcome 

notation for causal inference has allowed for the development of formal mathematical theory about 

causal inference that had previously been elusive. The counterfactual framework also provides a clearer 

understanding of the potential connection between our language and causal attribution. For our 

purposes, this framework may be useful in understanding where the disconnect occurs between the 

language and the concept that language is trying to convey. 

We illustrate the role of counterfactuals with an example. Suppose an educator had developed a 

supplemental online reading tool for third grade children in the United States and wanted to understand 

if this reading tool was helpful for improving reading proficiency. As a trial, she might try it out on one 

student by first administering a reading pretest, allowing the student to use the tool for three hours per 

week, and then testing the student again after three months. Suppose that the reading score obtained 

after using the tool for three months was 10 points higher than that obtained in the pretest. Would that 

mean that the tool caused the increase in reading scores? It is difficult to know with certainty. Perhaps 

the child would have experienced this gain even in the absence of the tool purely by instruction received 

at school or other experiences in and out of school during those three months. To say with certainty that 

the tool caused the increase we would need to know what would have happened in the imaginary 

counterfactual world where the student never received access to the tool.  

We can formalize counterfactual ideas with some notation. We use the random variable 𝑍𝑖 to denote 

treatment receipt for the ith student; 𝑍𝑖 = 1 indicates the treatment was received by the ith student (that 

student used the online tool) and 𝑍𝑖 = 0 indicates that it was not (student did not use the tool). Then, 

rather than just defining a random variable, for example 𝑌𝑖, to denote the observed outcome (test scores 

three months after the decision was made to use or not use the online tool), potential outcomes encode 

the idea of what might happen in each of two potential worlds: the world with the treatment (where the 

online tool was used) and the world without the treatment (where the online tool was not used). For 

instance, in our example above, the potential outcome that occurs three months after treatment initiation 

would be denoted as 𝑌𝑖(𝑍𝑖 = 1) (the outcome under the condition that online tool was used). We will 

use 𝑌𝑖(1) as a shorthand for this potential outcome. We can similarly define 𝑌𝑖(𝑍𝑖 = 0) = 𝑌𝑖(0) for the 

potential outcome corresponding to the condition that no treatment is received (online tool was not 

used). We can then define a causal effect formally as the difference between these two potential 

outcomes, 𝑌𝑖(1) − 𝑌𝑖(0). 
Unfortunately, we can never observe both potential outcomes for the same person. Thus, identifying 

individual-level causal effects is a nearly impossible task. Typically, researchers seek to estimate 

average causal effects instead. An average causal effect for a sample (of size n) can be defined simply 

as an average of the individual causal effects for all members of that sample, 

1

𝑛
∑ (𝑌𝑖(1) − 𝑌𝑖(0))
𝑛
𝑖=1 . 

While estimation of this quantity still suffers from a missing data problem (half the potential outcomes 

are missing!), careful designs can be used to identify these average effects. For instance, randomized 

experiments provide a design solution to this missing data problem because they create independence 

between the potential outcomes and the treatment assignment (for more information please refer to 

Chapter 18 of Gelman et al., 2020). In practice that means that we can use the average outcomes for the 

treatment group⎯a random sample of the full sample⎯to get an unbiased estimate of,  

∑ 𝑌𝑖(1)
𝑛
𝑖=1 . 

Similarly, we can use the average outcomes for the control group⎯a random sample of the full 

sample⎯to get an unbiased estimate of, 

 ∑ 𝑌𝑖(0)
𝑛
𝑖=1 . 

The important take-away from this discussion is that the causal estimand represents a comparison 

across counterfactual states (receiving or not receiving the treatment) for the same person (for instance, 

the “ith” person) or the same group of people (for instance, the sample). What can be confusing to 



Causal language and statistics instruction                                                                                Hill et al. 

4 

researchers and their audiences is that the estimators used to estimate these causal effects (for instance, 

difference in means across treatment groups or a regression coefficient from a regression of the outcome 

on a binary treatment indicator) represent a comparison of means across two different groups of people, 

those who receive the treatment or do not receive the treatment. We can only use these comparisons 

across groups to estimate a causal effect under special circumstances, such as in the context of a 

randomized experiment. So, if we only know about the difference in average outcomes across two 

groups and we do not know the design that produced those results, it is inappropriate to attribute 

causality to such a comparison. Similarly, if we know only that two phenomena are associated, this is 

not sufficient to justify a causal interpretation. 

 

2.2.  LINGUISTIC BARRIERS  

 

The first mechanism for misinterpretation considered is the language used to convey study findings. 

The linguistic features and implications of causal language have been discussed for many years within 

linguistics and psychology (e.g., Fausey et al., 2010; Haber et al., 2018; Solstad & Bott, 2017). 

Additionally, several statistics education scholars have argued that the language used to describe 

statistical methods and results is typically not sufficiently precise (Ancker, 2006; Cooper & Shore, 

2008; Ismail & Chan, 2015), specifically when it comes to distinguishing between causal and non-

causal phenomena (Thapa et al. 2020). Furthermore, Kaplan and colleagues (2009, 2010, 2012) have 

argued that when words commonly used in colloquial speech take on a specialized meaning in a 

discipline such as statistics, it creates a greater cognitive burden for the learner. They explored this 

“lexical ambiguity” by focusing on the words “association,” “average,” “confidence,” “random,” and 

“spread,” and found a disconnect between the desired statistical interpretation and the perceived 

meaning among introductory statistics students. Richardson et al. (2013) performed a similar study with 

the word “significance,” and Lavy and Mashiach-Eizenberg (2009) reported similar patterns in the 

Hebrew language.  

When statistical methods are used in situations involving associations between variables, the risk 

of causal misattribution becomes even more salient. For instance, consider a situation where the online 

tool described above was evaluated using a study that compared students in two third-grade classrooms 

in the same school. The tool was incorporated into the learning environment in one of the classrooms 

but not in the other. At the end of the school year, researchers compared test scores across the two 

classrooms and saw that the students in the classroom that had used the tool fared far worse on a reading 

comprehension test compared to children in the classroom that did not use the tool. In fact, the scores 

of those who used the tool were 20 points lower on average. This finding might be summarized as a 

negative association between tool exposure and test score and be described in the following way: “The 

online tool was associated with a 20-point decrease in test scores.” 

What is wrong with this wording? After all, it includes the word “association.” Shouldn’t that be a 

strong enough signal that the relationship is not necessarily causal? One issue is that, although 

statisticians have a precise definition for the word “association,” that does not formally imply causation, 

the technical meaning of the term (including lack of causal implication) is not always sufficiently well 

understood by students or other audiences. This lack of clarity is further complicated by the fact that 

the word “association” is used outside of statistics in a colloquial manner that has other meanings 

(Kaplan et al., 2009).  

Moreover, this interpretation also includes the word “decrease,” and thus seems to imply that the 

tool use decreased test scores for students (on average) by 20 points. A logical implication of such a 

causal interpretation would be that if the students who used the reading tool had instead not used the 

tool, they would have scored an average of 20 points higher than what we observed at the end of the 

year. Such an interpretation, however, is not merited. The only claim that is supported by the data is the 

conclusion that the two groups of children—those who used the reading tool and those who did not— 

scored differently at the end of the year on a reading assessment. Why this difference in means occurred 

is still elusive. Perhaps the students in the class that adopted the tool were performing at a lower level 

even before the tool was adopted. But what if we could measure test scores of the students before the 

tool was ever used and they were the same on average across classrooms? Would that evidence allow 

for causal attribution? The problem is that there are countless other reasons that the two groups could 

be different in terms of student or teacher characteristics that could account for the difference in test 
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scores at the end of the year. In general, pairing the statistical term “association” with words such as 

“change,” “gain/loss,” and “increase/decrease” may suggest to the reader a within-person comparison, 

either over time or across counterfactual states, despite the intention of suggesting a non-causal 

interpretation (Solstad & Bott, 2017).2  

 

2.3.  PSYCHOLOGICAL BARRIERS 

 

Even if the language used to describe study results has been constructed to be more deliberately 

non-causal, the reader still may be inclined to interpret the evidence causally (Fry, 2018; Mueller & 

Coon, 2013; Sibulkin & Butler, 2019; Tunstall, 2018). This is because, psychologically, people are 

predisposed to these types of misinterpretations of the evidence due to the human tendency to make 

meaning of experiences through causal interpretations. Multiple studies support this claim. For instance, 

work by van den Broek (2010) and O’Brien and Myers (1987) suggested that people are more likely to 

understand and retain information described using causal connections. Related work has demonstrated 

that people explain and predict behavior similarly to how they understand and tell stories; this requires 

understanding the sequence of events and making inferences about the mechanism behind each event 

(Read, 1987). Relatedly, Gerstenberg et al. (2017) demonstrated how people unconsciously use 

counterfactual simulation to imagine how a situation could have played out differently. 

Even more specific to our context, Kaplan (2009) showed how prior beliefs among undergraduates 

in an introductory statistics class influence the degree to which they accept study results as evidence. 

Tunstall (2018) observed similar patterns in an undergraduate quantitative literacy course, where “the 

majority of the students agreed with the author’s misleading message” (p. 76) in an opinionated news 

article. In addition, Owens (2018) provided evidence about how (physics) students were likely to 

invalidate evidence in cases where that evidence conflicted with their previous belief. Depending on 

the magnitude of the impact of prior beliefs, it seems possible that even if non-causal study results are 

communicated clearly, the audience may still be inclined to interpret them causally if the causal 

conclusions are consistent with their prior beliefs.  

 

2.4.  CURRENT PRACTICE IN STATISTICS 

 

Most students are not taught explicitly about foundational concepts in causal inference such as 

potential outcomes and counterfactuals. Nevertheless, most introductory (first or second semester) 

statistics students are generally taught about three related topics: randomized experiments, 

association/correlation, and linear regression. Let us consider how each topic is typically taught.  

We surveyed the introductory statistics textbook OpenIntro Statistics (Diez et al., 2019), two of the 

Statistics for Dummies series textbooks (McCormick & Salcedo, 2015; Rumsey, 2016), as well as each 

textbook on the Example Textbook List for the Advanced Placement (AP) Statistics Course Audit 

(College Board, 2024a). The AP Statistics course is important because it is a college-level statistics 

course offered in secondary schools around the world; students may earn college credit or advanced 

placement at universities in over 100 countries with a high score on the AP Statistics Exam (College 

Board, 2024b). These books were selected as a representative sample of textbooks that may be used in 

a typical introductory statistics course—OpenIntro Statistics due to its similarity to the textbook used 

by the students in this study, the Statistics for Dummies series as a top hit among introductory statistics 

books on Amazon.com, and the textbooks on the AP Statistics example list due to the AP Statistics 

course’s popularity and equivalency to an introductory college-level statistics course. Several of the 

textbooks on the AP Statistics example list are also used in university courses. For each textbook, we 

considered the textbook content that has a relationship to causal inference. 

 

Randomized experiments. Randomized experiments are often described as the most reliable way 

to generate data that can be used to estimate causal effects. Generally, the capability to estimate causal 

 
2 Words such as gain/loss and increase/decrease are considered by linguists to be causative verbs in the English 

language. For related studies that capitalize on these connections, see, for example, Adams et al. (2017), Parra et 

al. (2021), and Thapa (2021). For an example of a research methods book in the field of psychology that clearly 

delineates between causal and non-causal language, see Morling (2017). 
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effects when subjects are randomized into treatment groups is motivated to students by a combination 

of intuition (analogies to lotteries and coin flipping) and sometimes allusion to more formal statistical 

properties (randomization creates independence between the treatment assignment and pre-treatment 

variables by balancing out confounding effects) (e.g., Tintle et al., 2020, p. 239). Unfortunately, unless 

they are taking a course in causal inference, students are rarely taught to understand the formal 

definition of a causal estimand (none of the books we surveyed did so) and thus presumably continue 

to think of randomized experiments as answering a question about comparisons across groups. This 

omission in instruction may make it easier for the line between causal and non-causal interpretations of 

any such across-group comparisons to blur. 

 

Association and correlation. Most, if not all, introductory statistics textbooks caution that 

“association does not imply causation” (e.g., Moore et al., 2012, p. 130; Peck et al., 2016, p. 210). These 

discussions are typically accompanied by definitions and examples of confounding or lurking variables 

and often use news headlines such as “Do you spank? Studies indicate it could lower your kid’s IQ” as 

examples of how not to report such results (Peck et al., 2016, p. 30). In general, this topic is taught 

cautiously. However, it is not unheard of for interpretations to be overly causal. For instance, in their 

section on correlation/association, the textbook SPSS Statistics for Dummies states, “positive 

relationships show that as you increase in one variable, you increase in the other variable” (McCormick 

& Salcedo, 2015, p. 250). 

 

Regression. Contemporary instruction regarding regression analysis is often detrimental with 

respect to creating misunderstandings about causality. When interpreting regression coefficients, many 

commonly used textbooks are inconsistent in their guidance. For instance, although most descriptions 

of regression that we examined point out that “correlation is not causation” and provide associational 

interpretations, many then go on to make a variety of troubling claims. For instance, commonly 

prescribed interpretations of the slope of a least-squares regression line also tend to include language 

that is commonly interpreted causally, including “change,” “gain,” “loss,” “increase,” and “decrease” 

(Thapa et al., 2020). For example, Tintle et al. (2021) include a “key idea” that “the slope … is 

interpreted as the predicted change in the average response variable for a one-unit change in the 

explanatory variable” (p. 587, emphasis added). In another popular textbook, the reader is told that the 

slope “represents the predicted change in the response variable y given a one unit increase in the 

explanatory variable x” (Lock et al., 2017, p. 128). Similarly, Utts and Heckard (2015) wrote, “The 

slope tells us how much of an increase (or decrease) there is for the predicted or average value of the y 

variable when the x variable increases by one unit” (p. 76). As discussed in Section 2.2, interpreting the 

slope as a “change” or “increase” may well lead the reader to assume a causal relationship. What would 

be preferable is language that makes explicit that regression can only elucidate the difference between 

adjacent subgroup means—and even then, only then when the appropriate assumptions hold. A more 

honest interpretation of a regression coefficient advocated for in texts such as Gelman and Hill (2007), 

would take the following form: “The estimated coefficient, b, on variable, x, represents the difference 

between the means of subgroups of our sample that are 1 unit apart from each other on the variable z.” 

Causal interpretations of regression abound, in particular when textbooks describe results from 

applied examples. For instance, Lock et al. (2017) provide the following interpretation: “The slope of 

0.182 indicates that the tip is predicted to go up by about $0.182 for a one dollar increase in the bill” 

(p. 128). As another example, an interpretation of the slope of the regression line between a college 

student’s family income and the gift aid received reads, “For each additional $1,000 of family income, 

we would expect a student to receive a net difference of $1,000 × (–0.0431) = –$43.10 in aid on 

average, that is $43.10 less” (Diez et al., 2019, p. 321, emphasis in the original). Use of the word “less” 

might be considered non-causal, but when combined with a focus on just one student this interpretation 

feels like a within-person comparison of different states. A few sentences later, the authors wrote:  

We must be cautious in this interpretation: while there is a real association, we cannot interpret 

a causal connection between the variables because these data are observational. That is, 

increasing a student's family income may not cause the student's aid to drop. (p. 321) 

At this point, it is possible the damage has already been done. 
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These are not isolated examples. Similar language abounds throughout popular statistics texts. 

Often these texts also include a warning about unwarranted causal interpretations of regression results, 

and some have additional chapters that focus on randomized experiments or causal inference more 

broadly. Moreover, often the examples given are ones where a functional or physical relationship might 

plausibly exist (consider examples of the tip for a bill or aid received versus family income), and some 

texts only explicitly use these interpretations in examples based on randomized experiments. For 

instance, Starnes and Tabor (2014) provided a causal interpretation of a regression coefficient but for 

data that arose from a randomized experiment. The connection between the interpretation and the study 

design, however, is never made explicit. Presumably, the problem is not that these authors did not 

understand that it is inappropriate to interpret regression results causally, they possibly did not 

understand that the specific language choices used to describe these results might have such a powerful 

impact. Indeed, before undertaking this research, we had no idea either of the impact of such language 

or the baseline proclivity of students to infer causality inappropriately. 

 

2.5.  TEACHING ABOUT CAUSATION: CHALLENGING BUT IMPORTANT 

 

Given the barriers described above, it seems likely that the ability to carefully reason about 

causation may be difficult for students to develop. Indeed, in addition to the linguistic and psychological 

barriers described previously, researchers have documented the struggles students demonstrate when 

attempting to distinguish causation from correlation (Fry, 2018; Mueller & Coon, 2013; Sibulkin & 

Butler, 2019; Tunstall, 2018). When we additionally consider the strong tendency for human beings to 

attribute causation where there may be none, we can make a strong argument for increased instruction 

in causal inference. Velleman (2008) stated, “We should teach students to resist jumping to conclusions, 

extrapolating, and proposing explanations for associations that assume causation” (Section 11). Lübke 

et al. (2020) contended that causal inference should be explicitly taught in statistics courses in order to 

“overcome the mantra ‘Correlation does not imply Causation’” (Abstract) and offer examples of how 

to do so using linear regression with simulated data. This recommendation is echoed in Cummiskey et 

al. (2020), who discussed how to integrate causal inference into the introductory statistics course 

through the use of causal diagrams. Causal inference is also featured prominently in Horton’s editorial 

note (2023) and recent collection of papers that highlight approaches to teaching multivariate thinking 

(2022). In addition to the arguments for emphasizing causal inference in the classroom, researchers 

have also contributed classroom activities for teaching causal inference (e.g., Bennett, 2014; 

Cummiskey et al., 2020; Delport, 2023; Gelman et al., 1998; Lübke et al., 2020; Lu et al., 2023; 

Tunstall, 2016; Witmer, 2021). 

Although the literature reflects the argument for incorporating a deeper understanding of causal 

inference into the introductory course and offers examples of classroom activities for doing so, there is 

a lack of research into how students comprehend causation in study descriptions. Without this 

knowledge it is difficult to know how best to advise students to report non-causal findings. The current 

study addresses this gap by examining how students’ tendencies for causal attribution vary across 

language cues and study contexts. 

 

3. RESEARCH QUESTIONS AND DESIGN 

 

We collected data from university students in the United States to help us better understand the 

impact of word choices on causal interpretation. This data collection took the form of a vignette 

experiment administered over two time points. This section describes the following aspects of our study 

in more detail: the sample recruited for our study, the context within which the data were collected, the 

design and content of the vignette experiment, and the measures used to collect data. Our goal with this 

design is to address the following research questions. 

 

1. Does the choice of wording when describing study results impact the level of causal attribution 

for participating students? 

2. Is the choice of topic of study results associated with level of causal attribution for participating 

students?  
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3. Is variation in causal effects by experimental condition (word choice) moderated by vignette 

topic for participants?  

 

 

3.1.  SAMPLE 

 

A survey was administered in two waves to undergraduate students enrolled in an introductory 

statistics course at a large university in the United States in the Spring 2022 semester. The second wave 

was included to help understand whether we might see different effects of question wording after 

students had been exposed to material presented in class about topics related to causal inference. The 

course was split into nine sections of approximately 90 students each. Because the course used a flipped 

format—students watch videos, read the textbook, and take a short quiz on the material outside of class, 

then work through activities in groups during class—each section was led by one lead instructor, one 

statistics graduate student, and two undergraduate teaching assistants. The class material addressed 

issues of causality regularly and was largely the same as in previous years (see below for more details 

about course content). 

At the start of the semester, 767 students were registered for the course, of which 77 (10%) withdrew 

prior to the end of the semester. The majority of the student population were first or second year students 

(76%); 45% self-identified as female and 55% as male; 18% reported they were first generation college 

students; and the student population predominitely self-described as white (84%). There were a total of 

57 majors represented in the student population, with Business (29%), Nursing (7%), Ecology (6%), 

and Computer Science (6%) as the top four.  

In the first survey wave administered during the second class of the semester (January), 721 students 

took the survey and 661 of these (91.7%) consented to participate in the study. All respondents at Wave 

1 who agreed to participate completed the entire survey instrument. The second survey wave was 

administered at the end of week 14 (May) in the 15-week semester. In Wave 2, 504 students took the 

survey and 504 (100%) consented to participate in the study. Since 31 (6.2%) respondents at Wave 2 

did not complete the entire survey, they were dropped from the analysis, leaving a total of 473 

respondents. The demographics of respondents at Wave 2 differed slightly from Wave 1, as shown in 

Table 1. 

 

Table 1. Sample descriptive statistics for Waves 1 and 2 

 

Characteristic Wave 1 Wave 2 

Sample size (n) 721 473 

Average age (years) 20.1 (SD = 3.1) 21.0 (SD = 7.6) 

English as first language 647 (97.9%) 456 (96.4%) 

Prior statistics course 200 (30.3%) 163 (34.4%) 

Gender identity Female 298 (45.1%) 221 (46.7%) 

Male 346 (52.3%) 239 (50.5%) 

Nonbinary 13 (2%) 7 (1.5%) 

Other 2 (.3%) 4 (.9%) 

 

3.2.  STUDY CONTEXT 

 

The introductory statistics course from which we recruited our study participants followed a 

relatively modern curriculum, using an open source textbook that was modeled on the Introduction to 

Modern Statistics by Çetinkaya-Rundel and Hardin (2021) (Hancock et al., 2021). Sampling and study 

design were taught in the first two weeks, followed by descriptive statistics and data visualization in 

the next two weeks. The remainder of the semester focused on both simulation-based and theory-based 

hypothesis tests and confidence intervals for a single proportion, difference in proportions, difference 

in means, paired mean difference, and simple linear regression slope or correlation.  

Scope of inference (which includes topics such as whether causal attribution is warranted and can 

generalize to a larger population) was heavily emphasized on nearly all assignments, classroom 

activities, and exams. Students watched videos and read material about whether results can be 
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generalized to a larger population and whether a study design allows for causal conclusions, during the 

second week of the semester, when the topics were introduced across three consecutive class periods. 

The first survey wave was purposefully conducted prior to students’ exposure to this material. 

Random sampling, sampling bias, and their relation to study generalizability were introduced in the 

first in-class activity on scope of inference. This activity started with examples of four different studies. 

For each study, students were asked to identify the target population, the sample, the variable(s) being 

measured, and whether selection bias, response bias, or non-response bias could potentially be a 

problem. The activity then led students through selecting a sample of words “by eye” from a famous 

American Indian speech, calculating the sample mean length of the words, and comparing the 

distribution of sample means to the mean word length of the entire speech. Students could then discover 

that sampling “by eye” introduces selection bias, since larger words tend to be overrepresented in the 

students’ samples. During an activity in the next class period, students revisited the same speech, but 

this time selected samples of words using a random number generator. 

During the third class period of the second week, students completed a lab that reexamined scope 

of inference principles in a different context. Observational studies, confounding variables, randomized 

experiments, and the purpose of random assignment were the focus of this activity. As with the first 

activity, students read example studies and were asked to identify the explanatory and response 

variables and the study design. Next, students used the Rossman and Chance “Randomizing Subjects” 

applet (2021) to simulate randomly assigning subjects to placebo and treatment groups, then explored 

the distribution of the difference in proportion of males in each group and the difference in mean heights 

between the groups, noticing that random assignment tends to “balance out” potential confounding 

variables. Scope of inference continued to be discussed with every study introduced in the class and 

was included as an aspect of most student assessments. 

 

3.3.  VIGNETTE EXPERIMENT 

 

To assess the impact of the wording of research findings on the extent to which students view the 

implications as causal, we designed an experimental vignette study, or vignette experiment, embedded 

within each survey (Waves 1 and 2). This experiment randomized students to be exposed to one of 

several options for the wording of a description of hypothetical study findings. In any given 

administration of the survey, we presented each student with vignettes on each of four different topics 

about hypothetical data that had been collected on a given sample of individuals (for instance, adults or 

grade school students) where a relationship between two variables (for instance, vaping and anxiety or 

an afterschool program and test scores) was observed. The four topics used in the second wave differed 

from those in the first wave, for a total of eight topics across the study. (Additional information about 

the topics is included below.) We followed each vignette with questions aimed at revealing the extent 

to which the reader understood the study results to be implying a causal relationship. Our focus on the 

presentation of research findings follows in the tradition of scholars who have performed similar 

experiments using wording from actual studies and reporting on studies (see, for instance, Adams et al., 

2019; Haber et al., 2018; Haber et al., 2022). We focused instead on hypothetical studies so that we 

could control the wording of the experimental conditions more precisely.  

We summarize examples of the wording choices in Table 2 and describe our thinking regarding our 

classifications of the examples in this section (complete language is available in Appendix A). Within 

each wave, students were randomly assigned to one of six distinct types of descriptions, or vignettes, 

of the hypothetical study findings. Students each experienced the same experimental condition (type of 

wording) for all four topics at a given wave. The language used in these descriptions, which ranged 

from strongly causal to purely descriptive, constituted our treatment conditions. 
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Table 2. Vignettes (treatment conditions) presented to students for the vaping/anxiety topic 

 
 Condition Name 

 

Level of Implied 

Causality 

Researchers have found that vaping caused an increase in anxiety 

levels among college students. 

Caused Explicitly causal 

Researchers have found that vaping led to an increase in anxiety 

levels among college students. 

Led to Explicitly causal 

Researchers found that among college students vaping was 

associated with an increased level of anxiety. 

Increased/decreased Implied causality 

Researchers found that vaping was associated with higher levels 

of anxiety among college students. 

Higher/lower Implied causality 

Researchers found that college students who vaped regularly had 

higher levels of anxiety compared to those who didn't vape. It's 

possible that students who decided to vape had higher levels of 

anxiety when they made the decision to start vaping. 

Possible that Explicitly non-

causal 

Researchers found that college students who vaped regularly had 

higher levels of anxiety compared to those who didn’t vape. 

Skeptics argue that this difference in outcomes could be 

explained by the fact that students with higher levels of anxiety 

are more likely to decide to vape. 

Skeptics argue Explicitly non-

causal 

 

3.4.  MEASURES 

 

Within a section devoted to a given topic after reading the description of findings randomly assigned 

to them, the study participant was asked a series of follow-up questions. Responses to these questions 

were used as covariates and outcomes in our analyses as described next. 

 

Primary outcome. The question corresponding to our primary outcome of interest assessed the 

degree to which the student considered the relationship described in the study findings to be causal, 

which we will henceforth refer to as the “level of causal attribution.” For example, in the vaping/anxiety 

topic, the survey question was, “Based on these findings, how confident are you that vaping made the 

students more anxious?” The respondents selected their responses on a scale from 0 (“not confident”) 

to 100 (“most confident”) using a slider. 

Given the multitude of choices regarding how to understand whether our study participants 

interpreted the findings presented in the vignettes causally, it is worth discussing both our specific word 

choices for as well as the scale of our measure. Regarding our word choice, why not ask the students 

more directly about causal attribution by using the word “cause” in the question? The choice to avoid 

use of the word “cause” was driven by concern about the issue of “demand characteristics.” This is a 

term used to describe signals to participants about the true underlying aim of a study. Psychological 

research has documented that when these study features are present, participants may respond to social 

pressures to be “good participants” and provide responses that confirm the study’s hypothesis (see, for 

instance, Nichols & Maner, 2008). In our case, if we made it explicit that we were studying causality, 

then that might unintentionally alter the responses in ways that did not reflect the respondents’ native 

understanding of the language they were exposed to in the vignettes. We avoided use of the word 

“cause” in our outcome measure for this reason.  

This choice, however, left us with a decision to make about how to phrase the question for our 

outcome measure in a way that clearly implied causality. We chose the word “made” (e.g., “Vaping 

made the students more anxious”) because linguistically, verbs of the form “to make” are considered to 

have very strong causal connotations (see, for instance, Nadathur & Lauer, 2020). Moreover, there is 

empirical evidence that readers understand this connection (Adams et al., 2017). Additionally, in 

informal cognitive testing with students in our lab, we assessed that the phrasing of the questions was 

consistently interpreted as reflecting a causal connection. 
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Finally, we address our choice of scale for our outcome measure. There has been repeated debate 

over the past two or more decades about the tradeoffs in terms of usability and reliability of using 

Likert-based scales versus continuous slider or related Visual Analogue Scale (VAS) measures, 

particularly as technology increasingly allows for easier interface with and scoring of slider-type 

approaches to measurement. The literature suggests that this debate has not been unequivocally 

resolved, but recent positive evidence suggesting similarity in performance and a desire for a 

straightforward analytic model encouraged us to use a continuous measure (Roster et al., 2015; Simms 

et al., 2019). 

Moreover, as an informal means of assessing whether this measure was appropriate for our goals, 

we asked the students in the causal inference lab associated with one of the authors to evaluate the 

questions based on understandability. We also asked them whether they preferred a scale from 0 to 100 

or a seven-level Likert scale as a means of expressing their confidence regarding whether the 

relationship is causal. They uniformly preferred the continuous measure. These assessments led us to 

believe that the scale from 0 to 100 was preferable for assessing causal attribution. 

 

Secondary outcomes. To support the information solicited by our primary outcome measure, we 

included several secondary outcome measures to understand students’ prior beliefs or knowledge about 

each of the topics described by the vignettes. Our concern was that our participants’ level of confidence 

in the causality of a relationship might be strongly influenced by these prior beliefs or knowledge. For 

example, we suspected that the topic of vaping might be tied to strong opinions. To guard against these 

prior characteristics dominating our results we included two additional aspects to our study design. Our 

first strategy was to present vignettes for several different types of topics that would allow for variation 

in students’ prior opinions and knowledge. These topics addressed a variety of relationships and 

populations. In the first wave, these topics included: 1) vaping and anxiety among teens, 2) an 

afterschool tutoring program and reading scores among grade school students, 3) yoga and falls 

resulting in broken bones among senior citizens, and 4) participation in study abroad programs and 

graduation rates among college students. We used different topics for the four vignettes presented in 

the second wave so that students’ previous experience with these topics in the first wave could not 

influence their second wave results: 1) nutritional supplements and muscle mass among senior citizens, 

2) meditation and anxiety among adults, 3) reading science fiction in middle school and majoring in a 

STEM (science, technology, engineering, and math) field among college students, and 4) game-based 

learning and math skills among elementary school students. 

As our second strategy, we explicitly asked about students’ presumed prior knowledge or affinity 

with the topic. In particular, we asked each participant follow-up questions of the form, “How much do 

you know about vaping and its health implications?” and “How much do you care about vaping and its 

health implications?” For each of these questions, the respondent could choose one option on a five-

point Likert scale that ranged from “not at all” to “a great deal.” Since these questions were asked after 

the students received the experimentally manipulated prompt, they may have been influenced by the 

wording, in which case they should not be used as covariates or moderators in our analyses. We found 

no strong relationship between the experimental manipulation and responses to the “know” or “care” 

questions.  

 

Socio-demographics and prior experience. We collected information on students’ age (in years) 

and gender identity (male, female, non-binary/third gender, prefer not to say, or other). We waited to 

collect additional information about study participants until the end of the survey to avoid any potential 

that responding to these questions might affect responses to the experimental manipulation. These 

questions asked about previous coursework in statistics and whether English was their primary 

language. Summaries of these variables by wave are presented in Table 1. 

To avoid potential bias due to lack of attention to the content of the survey, we included an explicit 

attention check. At the beginning of the survey (first question after the consent process), we asked 

survey participants to report their age in years. At the end of the survey (after the experimental 

manipulation), we asked them to report what year they were born. If this information did not match, we 

did not use the survey results. At both waves, no respondents reported conflicting information about 
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age, and all respondents reported being over 18 years old, suggesting that students were attending to 

the content of the questions.  

 

4. METHODS AND RESULTS 

 

The primary goal of our analyses was to understand whether the wording of research findings affects 

levels of causal attribution in our sample. To put these results in context, we first report descriptive 

summaries of our findings. We then present results from models that explore variation in responses 

based on both question wording and vignette topic. Finally, we present findings for our primary goal 

and explore whether these effects are moderated by vignette topic or prior statistical background. We 

discuss the methods used at the same time we present results from those analyses to allow for easier 

access to the model specifics when interpreting the findings. Throughout, all analyses were fit 

separately for each of the two waves because, due to the anonymity of the survey responses, we had no 

way of linking students’ responses between survey waves, and pooling all responses into a single 

analysis would have introduced non-identifiable dependencies.  

 

4.1.  DESCRIPTIVE DIFFERENCES ACROSS VIGNETTE TOPICS  

 

We began our analysis with unadjusted comparisons of the effect of experimental factors (wording 

used for descriptions of results) and vignette topic on confidence in causal attributions. Figure 1 displays 

boxplots that highlight features of the distribution of the level of causal attribution for each topic. The 

top panel shows the measures from the four vignette topics presented in the first wave (beginning of 

semester). The bottom panel shows the measures from the four vignette topics presented in the second 

wave (end of semester).  

 

 

Figure 1. Boxplots of causal attribution by vignette topic for both waves, with vignette topics ordered 

by mean level of causal attribution (highest to lowest from top to bottom) for each wave 

 

These boxplots reveal substantial variation in causal attribution irrespective of our experimental 

manipulation. In the first wave, participants were less likely to have high confidence in a causal 

relationship for the yoga and reading topics compared to the vaping and study abroad topics. In the 

second wave, there was less variation in the level of causal attribution across the vignette topics. 

Because different topics were used in the second survey administration, we have no way of knowing if 

this difference is a function of the subject matter of the topics or of the fact that the students had been 

exposed to more statistical reasoning about causal inference and experiments at that point in the 

semester. Overall, across waves, we found the strength of the level of causal attribution to be rather 

surprising given that two-thirds of these respondents received wording meant to indicate only 

associational evidence. 
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4.2.  DIFFERENCES ACROSS EXPERIMENTAL CONDITIONS 

 

Figure 2 presents boxplots of the levels of confidence in a causal relationship by experimental 

condition. Here, several important patterns begin to emerge. In Wave 1, the level of causal attribution 

is not noticeably higher when results are explicitly presented as being causal compared to when the 

relationship is described as an association. Conditions that include caveats in the description (“possible 

that,” “skeptics argue”), however, lead to a marked decrease in the level of causal attribution. In Wave 

2, explicitly causal presentations appear to increase confidence in a causal relationship. However, no 

strong differences in average level of causal attribution emerge between those settings in which the 

relationships between variables are not described using the word “cause.”  

 

 
 

Figure 2. Boxplots of causal attribution by experimental condition for both waves, with the conditions 

in each wave ordered by presumed relative causality of wording (most to least from top to 

bottom) 

 

4.3.  EFFECT OF EXPERIMENTAL CONDITION AND CONTEXT  

 

After these descriptive analyses, a separate multilevel linear regression analysis for each wave was 

used to formally test differences in causal attribution across vignette topics and experimental factors of 

the wording used to describe results for our study participants. We fit mixed effects models to estimate 

treatment effects. To account for dependencies within a given student’s responses within a single survey 

wave, a variable for student ID3 was included as a random effect to preserve degrees of freedom and 

yield more efficient estimators (Gelman & Hill 2007). Vignette topics were also included as a separate 

random effect.  

The choice to model these terms as random effects rather than fixed effects (given that there are 

only six categories) was motivated by several considerations. The first is that the subset of topics 

included in our study can be loosely considered to be drawn from a population of all possible research 

topics. The second consideration is that fitting vignette topic as a random effect allows us to easily make 

direct comparisons between all topics within a given time period rather than comparing topics to a 

single designated reference class. This is desirable given that there is neither an a priori ordering of 

these topics with regard to their expected level of causal attribution nor a clear “reference” category. 

Finally, the fact that we are making a total of 12 topic comparisons could lead to multiple comparisons 

issues that would leave us over-confident in our results. Fitting a random effects model has been shown 

to alleviate concerns of multiple comparisons in this situation without compromising efficiency 

(Gelman & Hill, 2007; Gelman et al., 2012).  

 
3 Although we can identify individual survey responses within a single wave, we do not have a unique identifier 

to link students across waves. 
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Experimental factors (wording used for descriptions of results) were included as fixed effects. In 

this initial model, covariates were included to increase the efficiency of our estimates. We did not, 

however, allow the experimental effects to vary across vignette topics. The covariates included were 

age, English as a first language, gender, the extent to which students care about the topic of the vignette, 

the extent to which students know about the topic of the vignette, and whether the student had received 

prior statistics training. In this initial model we do not allow the experimental effects to vary across 

vignette topics. 

Our mixed effects models were fit in R using the rstanarm package with the default weakly 

informative priors (Goodrich et al., 2022). In essence, that prior specification reflects the fact that our 

information about the difference between groups (for the topic random effects) or individuals (for the 

individual level random effects) does not give us any reason to believe a priori that there are specific 

differences between them. So, without data, our best guess would be that there are no differences. Our 

model specification simultaneously captures the fact that we have a great deal of uncertainty about that 

best guess. In practice we have enough data that this priori should be “swamped” by the information it 

contains (that is, the estimates should be driven primarily by the data, not the priori). Thus, our Bayesian 

analysis should converge to the maximum likelihood estimates from a frequentist analysis while 

maintaining the added flexibility and advantages described above (easier comparisons with appropriate 

calibration of uncertainty to account for multiple comparisons). Models were fit by drawing from the 

posterior distribution using 10 Markov chain Monte Carlo (MCMC) chains using 1000 iterations with 

1000 burn in iterations with no thinning. The goal is to get independent draws from a posterior 

distribution (the Bayesian equivalent of a sampling distribution) that can be used to evaluate how likely 

various hypotheses are relative to observed data. “R hat” values were used to check model convergence. 

All R hat values were very close to 1.0, indicating convergence of MCMC chains (Gelman & Rubin, 

1992). 

Contrasts between the least causal experimental setting and all other settings are displayed in Figure 

3. These contrasts adjust for all covariates. Points indicate the difference in the mean level of causal 

attribution between the experimental condition specified on the y-axis and the most explicitly non-

causal experimental factor (“skeptics argue”). These conditions are ordered by our prior expectation of 

how likely they were to be interpreted causally. Lines represent 95% uncertainty intervals, and the shade 

denotes whether the results were from the first or second wave. 95% uncertainty intervals in a Bayesian 

analysis can be thought of as representing the probability that the parameter in question lies in the given 

interval. Note that the average level of causal attribution for the baseline category (“skeptics argue”) is 

54.3 for Wave 1 and 58.7 for Wave 2 on the 100-point scale.  

 
Figure 3. Causal effects of question wording (points) and 95% intervals (line segments) compared to 

the “skeptics argue” condition, with Wave 1 results in black, Wave 2 results in gray, and 

experimental conditions ordered by presumed relative causality of wording (most to least from 

top to bottom) 
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The results displayed in Figure 3 indicate that, in our setting, research findings that use language 

including the word “cause” are those that are rated most causal by the study participants, with estimated 

effects (relative to the “skeptics argue” condition) of about seven points on the 100-point scale. Neither 

of the 95% intervals for the difference between this condition and the “skeptics argue” condition overlap 

with zero. Noticeable effects (ranging from about 3 to 6.5) occur for the next two conditions as well, 

with intervals for Wave 1 that do not include zero. These conditions do not use the word “cause,” but 

do, however, include words with causal implications (“increased/decreased” and “led to”). Use of words 

without explicit causal meaning “higher/lower” does not substantially alter effect estimates (estimates 

of about three or four points), and both associated uncertainty intervals cover zero. Results from the 

other condition that offers a caveat to the initial statement (“possible that”) are quite similar to those 

from our comparison condition (“skeptics argue”). If our level of causal attribution outcome measure 

is inducing measurement error, it is possible that our effect sizes have been attenuated. 

Given that each participant at each survey wave responded to questions about the same four topics, 

we have the opportunity to better understand whether the level of causal attribution was impacted by 

the subject matter of the vignette. Although vignette topics were not randomly assigned to participants 

(each participant was exposed to all of them), we have the advantage that all four topics were seen by 

each person, allowing for within person comparisons at the same point (modulo a few minutes). To 

interpret these effects causally, we do have to assume that a vignette on any given topic did not cause 

any change in the individual that would influence their response to the next vignette (on a different 

topic). For instance, we have to assume that reading hypothetical results about a study on vaping and 

anxiety would not influence a student’s response to a vignette focused on study abroad. As a reminder, 

participants each experienced the same experimental condition (type of wording) for all four vignette 

topics at a given wave. 

The same multilevel regression was used to understand the effect of vignette topic on confidence in 

a causal relationship. Figure 4 displays results as mean differences across pairs of topics with the 

corresponding uncertainty intervals. Because we have no a priori beliefs about which vignette topic 

would elicit the highest level of causal attribution on average, we present a summary of all six pairwise 

comparisons within each wave (distinguished again by black and gray shading). Comparisons are 

ordered from largest effect estimates to smallest (top to bottom). 

 
Figure 4. Mean differences in levels of causal attribution (points) and corresponding 95% uncertainty 

intervals (line segments) across pairs of vignette topics, with Wave 1 results in black, Wave 2 

results in gray, and ordered by the size of the difference (highest to lowest from top to bottom) 

 

We are reluctant to read too much into the specific topics chosen and their potential effect on a 

participant’s degree of confidence in a causal connection. Rather, we display these comparisons as a 
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contrast to the results from our experimentally manipulated wording conditions. The largest treatment 

effect we saw from our wording conditions for our study participants was about seven points. In 

contrast, the “effect” of vignette topic varies from close to zero to nearly 40 points. Half of these “topic 

effects” were as large or larger than the largest wording effect. It is also worth pointing out that, although 

the uncertainty intervals are much narrower for these comparisons relative to the experimental 

comparisons, that is not surprising given that we had six times as many subjects available to estimate 

these effects (the full subject pool at each wave) relative to those available for the experimental 

condition comparisons. These results provide ballast for explanations favoring the evidence for 

psychological explanations of these effects. 

 

4.4.  MODERATORS 
 

Our results thus far help us understand overall impacts for our sample. It is, however, likely  that 

the effects of our experimental conditions vary based on the specifics of the individuals exposed to 

them. We explore two such moderation mechanisms in this section. 
 

Vignette topics as moderators. Given that we know that levels of causal attribution vary across 

vignette topics and that moderately sized average treatment effects for our sample were induced by 

some of our experimental conditions (relative to the least causal option), it seemed worth exploring 

whether our experimental treatment effects varied across vignette topics. To investigate, we expanded 

the model described in Section 4.3 to include a varying slope component to explore the variation in 

treatment effect estimates across vignette topics.  

Figure 5 displays our results in a similar manner to Figure 3, but now allowing each treatment effect 

to vary across vignette topic. Descriptively, these results demonstrate variation in treatment effect 

estimates across vignette topics; however, the pattern of differences is not consistent across 

experimental settings (wording choices). Moreover, all of these uncertainty intervals overlap with each 

other, so it is difficult to draw strong conclusions about differences in treatment effects across vignette 

topics. 

 
Figure 5. Variation in wording effects estimated separately for each vignette topic, with Wave 1 results 

in black and Wave 2 results in gray and where “skeptics argue” is the counterfactual condition 
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Prior statistical training as moderators. It is possible that the size of the effect of wording choice 

in our sample varies based on whether students had previously been exposed to training in statistics. At 

a minimum, these students should be more likely to understand the connotations of statistics terms such 

as “association” and possibly would be more cautious in general about attributing causality, particularly 

at the start of the semester. 

Our results are suggestive of these patterns. Figure 6 displays boxplots of the causal attribution 

variable separate for each experimental condition and wave, and additionally breaks this out by whether 

students have received statistical training prior to their current course. Descriptively, we see the biggest 

differences between these two groups in Wave 1 within the “associated higher/lower” and the “skeptics 

argue” conditions. In Wave 2, while the medians of each distribution are similar across experimental 

conditions, the distributions for causal attribution are more prominently skewed to the left for four of 

the conditions, suggesting that at least some of those with previous training were apt to be more cautious 

in their interpretations. 

 

 
Figure 6. Boxplots of level of causal attribution by experimental factor, wave, and prior statistics 

training, with darker boxes representing responses from students with prior statistics training 

and lighter boxes representing responses from students without any prior statistics training 

 

We also extended our model from above to allow for direct tests of the effects of question wording 

in these subgroups. The results are displayed in Figure 7 as treatment effect estimates in each wave for 

each of the experimental conditions relative to “skeptics argue” condition, as with Figure 5. In this plot, 

however, these effects are further broken out by subgroups defined by prior statistical coursework. Here 

we see causal effects with 95% uncertainty intervals that exclude zero for all (wave, coursework) 

subgroups for the condition where the word “caused” was used in the description of the findings 

(relative to “skeptics argue” reference condition). That is, for each causal effect, at least 97.5% of the 

corresponding posterior distribution is greater than zero. However, only the students with prior 

statistical training who participated in Wave 1 also display evidence that the other wording conditions 

led to effects on causal attribution (compared to the “skeptics argue” condition) with uncertainty 

intervals that exclude zero. The posterior distributions for each of these effects have a smaller mean in 

the second wave and each of the 95% uncertainty intervals includes zero. 
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Figure 7. Variation in wording effects (points) by prior statistical training relative to the “skeptics 

argue” condition, with Wave 1 results in black and Wave 2 results in gray 

 

5. LIMITATIONS 

 

While this study has many advantages, most importantly the ability to randomly assign wording 

conditions, it is not without limitations. One key limitation is the lack of unique identifiers for students. 

Without this information we cannot run analyses on the full sample because the observations are not 

independent of each other. Moreover, the fact that we used different vignette topics at each wave means 

that we cannot distinguish between survey wave and vignette topic salience. We chose this approach 

because we were concerned that students might remember the settings from one wave to the next, which 

could bias the Wave 2 results. In future work, we will obtain student identifiers and reverse the ordering 

of the vignette topics between waves to address both issues. We would also hope to randomly assign 

the order of the vignette topics within a given wave in case the information obtained for one has an 

influence on the response given for another. 

Although our sample is reasonably large, it consists entirely of undergraduates from a single 

university who were taking a course in introductory statistics. We cannot guarantee that our results will 

generalize to students who would not take this introductory course or students from another university. 

We also cannot generalize to individuals who are the same age but are not students, or individuals from 

other age groups. Finally, we can only draw conclusions about people residing in the United States. 

Wording choices and proclivity towards causal attribution may well vary substantially across cultures, 

nationalities, and languages, among other individual characteristics. 

An additional limitation arises based on the fact that the measure used for our outcome variable has 

not been psychometrically validated. Using a scale of “confidence in causal attribution” from 0 to 100 

has advantages in terms of modeling choices and the related ease of interpretability of model 

parameters. It may, however, not be the optimal choice for understanding the extent to which a survey 

participant views a statement as conveying a causal relationship. In fact, the arbitrary nature by which 

participants might choose their responses on this scale may introduce measurement error. If so, our 

results may be attenuated, and we may have less power to distinguish between groups. More research 

is needed to understand the best way to measure this construct. 

Another limitation of this study is that it focuses solely on language and does not explore whether 

students’ understanding of how a study was carried out might inform their level of causal attribution. 

For instance, if a well-trained student knew that a study randomized treatments they might feel 

(justifiably) comfortable with a causal interpretation even in the absence of causal language. 

Conversely, the student might be wary of the use of causal language if it was known that the 

observational study design did not warrant any causal conclusion. Our current study focuses solely on 

the language used and thus cannot speak to how a student’s perception might be altered if they 

additionally were informed about the study design. This could be an interesting avenue to pursue in 

future research.  



Statistics Education Research Journal 

19 

Finally, we recognize that the specific wording and topic choices incorporated in our study represent 

just a small subset among an infinite number of options. Although our choices regarding wording were 

tied to language that we have seen used in practice, there are many other options available that could 

be explored. Moreover, it is difficult to learn much about the specifics of what types of contexts are 

more prone to causal misattribution using this current study. 

 

6. DISCUSSION AND NEXT STEPS 

 

Our results suggest that the wording used to describe study findings does appear to impact the 

degree to which students in our sample understand relationships to be causal. Unfortunately, switching 

wording from explicitly causal (“A caused B”) to language that statisticians consider to be associational 

(“A was associated with a change/difference in B”) does not seem to eliminate the proclivity to interpret 

the relationship between key variables causally. Our study, however, does provide support for the fact 

that additional caveats that provide alternative explanations can, in some settings, at least reduce the 

propensity towards causal attribution.  

Perhaps more surprising, if we interpret the variation in level of causal attribution across vignette 

topics causally, it appears that students’ tendency to interpret findings causally may have more to do 

with the subject matter context of the findings than the wording. This finding suggests that students 

may rely more on their own prior beliefs about the relationships between variables than the empirical 

evidence, even when they are explicitly told to only use the evidence presented when assessing their 

confidence in a causal relationship. This importance of context for student understanding is also 

reflected in the literature. On the one hand, a meaningful study context has the potential to promote 

statistical reasoning and engagement (Langrall et al., 2006; Yilmaz et al., 2023; Zapata-Cardona, 2023). 

Indeed, the third recommendation in the Guidelines for Assessment and Instruction in Statistics 

Education College Report reads, “Integrate real data with context and purpose” (GAISE College Report 

ASA Revision Committee, 2016, p. 3). On the other hand, students may use study context in a way that 

is not necessarily productive or helpful to the task at hand (Langrall et al., 2006), and their beliefs or 

opinions about a certain context are sometimes hard to separate from their statistical reasoning 

(Wroughton et al., 2013). Context appears to show this same range from helpful to unhelpful when 

determining causal attribution in scientific studies. This study provides some insight into how changes 

in language and context relate to students’ understanding of causation. Our results suggest that there 

may be a proclivity among introductory statistics students towards causal attribution when interpreting 

research findings that is difficult to change. One implication of this is that statistics instruction should 

likely be more careful and explicit when teaching students how to interpret non-causal findings and 

perhaps should also include more content on the distinctions between causal and non-causal estimands. 

For instance, it may be useful to present study results in a variety of ways, demonstrating the range of 

language students might encounter when studies are reported in the media and discussing how subtle 

changes in language (e.g., “vaping increases anxiety” versus “those who vape have higher levels of 

anxiety”) can signal different levels of causal attribution. Additional research is needed to understand 

what strategies might be more successful in reducing the proclivity of students (and other individuals 

who digest research findings) to attribute causality to findings that are explicitly only descriptive in 

nature. 
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APPENDIX A 

 

Appendix A shows all combinations of topics and experimental factors. This appendix is organized 

by experimental condition. 

 

Wave 1 

 

Experimental condition 1: “Skeptics” 

 

Researchers found that elementary school children who participated in an afterschool reading program 

had lower reading scores, on average, at the end of the school year compared to elementary school 

children who did not participate in the afterschool reading program. Skeptics argue that the difference 

in outcomes could be explained by the fact that children who are worse at reading are more likely to 

participate in such programs. 

 

Researchers found that senior citizens who participated in yoga once a week had lower rates of falls 

resulting in broken bones, on average, compared to senior citizens who did not participate in yoga. 

Skeptics argue that the difference in outcomes could be explained by the fact that senior citizens who 

are in better physical condition are more likely to participate in yoga. 

 

Researchers found that college students who participated in a study abroad program had higher rates of 

on-time graduation compared to those who didn't. Skeptics argue that the difference in outcomes could 

be explained by the fact that students who are on track to graduate on time have more freedom to 

participate in study abroad programs. 

 

Researchers found that college students who vaped regularly had higher levels of anxiety compared to 

those who didn't vape. Skeptics argue that this difference in outcomes could be explained by the fact 

that students with higher levels of anxiety are more likely to decide to vape. 

 

Experimental condition 2: “Possible that” 

 

Researchers found that elementary school children who participated in an afterschool reading program 

had lower reading scores, on average, at the end of the school year compared to elementary school 

children who did not participate in the afterschool reading program. It's possible that students who 

participated in the program had lower test scores than the non-participants before beginning the 

program. 

 

Researchers found that senior citizens who participated in yoga at least once a week had lower rates of 

falls resulting in broken bones, on average, compared to senior citizens who did not participate in yoga 

once a week. It's possible that senior citizens who participated in yoga were in better physical condition 

before participating in yoga. 

 

Researchers found that college students who participated in a study abroad program had higher rates of 

on-time graduation compared to those who didn't. It is possible that the students who participated in 

study abroad programs had a higher graduation rate than the non-participants before the beginning of 

the program. 

 

Researchers found that college students who vaped regularly had higher levels of anxiety compared to 

those who didn't vape. It's possible that students who decided to vape had higher levels of anxiety when 

they made the decision to start vaping. 

 

Experimental condition 3: “Higher/lower” 

 

Researchers found that participating in an afterschool reading program was associated with lower 

reading scores among elementary school children at the end of the school year. 
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Researchers found that, among senior citizens, participating in yoga at least once a week was associated 

with lower levels of falls resulting in a broken bone. 

 

Researchers found that participating in a study abroad program while in college was associated with 

higher rates of on-time graduation. 

 

Researchers found that vaping was associated with higher levels of anxiety among college students. 

 

Experimental condition 4: “Increased/decreased” 

 

Researchers found that participating in an afterschool reading program was associated with a decrease 

in reading scores at the end of the school year among elementary school children. 

 

Researchers found that, among senior citizens, participating in yoga at least once a week was associated 

with a decrease in probability of falling and breaking a bone. 

 

Researchers found that participating in a study abroad program while in college was associated with an 

increased probability of on-time graduation. 

 

Researchers found that among college students vaping was associated with an increased level of 

anxiety. 

 

Experimental condition 5: “Led to” 

 

Researchers found that participating in an afterschool reading program led to a decrease in reading 

scores among elementary school children who participated in the program. 

 

Researchers found that, among senior citizens, participating in yoga at least once a week led to a 

decreased probability of falling and breaking a bone. 

 

Researchers found that participating in a study abroad program while in college led to an increased 

probability of graduating on time. 

 

Researchers have found that vaping led to an increase in anxiety levels among college students. 

 

Experimental condition 6: “Caused” 

 

Researchers found that participating in an afterschool reading program caused a decrease in reading 

scores among elementary school children who participated in the program. 

 

Researchers found that, among senior citizens, participating in yoga at least once a week caused a 

decrease in falls with broken bones. 

 

Researchers found that participating in a study abroad program while in college caused an increase in 

on-time graduation rates. 

 

Researchers have found that vaping caused an increase in anxiety levels among college students. 

 

Wave 2 

 

Experimental condition 1: “Skeptics” 

 

Researchers found that senior citizens who take nutritional supplements every day had greater muscle 

mass, on average, compared to those who did not take nutritional supplements. Skeptics argue that this 
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difference in outcomes could be explained by the fact that senior citizens who exercise more regularly 

are more likely to decide to take nutritional supplements. 

 

Researchers found that adults who meditate at least three times a week had lower levels of anxiety, on 

average, compared to those who did not meditate. Skeptics argue that this difference in outcomes could 

be explained by the fact that adults with lower levels of anxiety are more likely to choose to meditate. 

 

Researchers found that those who read science fiction regularly in middle school had higher rates of 

majoring in a STEM (science, technology, engineering, and math) field in college, on average, 

compared to those who didn’t read science fiction. Skeptics argue that this difference in outcomes could 

be explained by the fact that those who were already interested in science and related fields in middle 

school would also be more likely to then choose to read science fiction. 

 

Researchers found that elementary school children who take game-based learning for math had higher 

levels of math confidence, on average, compared to those who do not participate. Skeptics argue that 

this difference in outcomes could be explained by the fact that elementary school children who already 

liked math and were confident in their math ability might be more likely to be assigned by teachers to 

a game-based learning program for math. 

 

Experimental condition 2: “Possible that” 

 

Researchers found that senior citizens who take nutritional supplements every day had greater muscle 

mass, on average, compared to those who did not take nutritional supplements. It’s possible that senior 

citizens who decided to take nutritional supplements were also those who more regularly exercised.  

 

Researchers found that adults who meditate at least three times a week had lower levels of anxiety, on 

average, compared to those who did not meditate. It’s possible that adults who decided to meditate 

already had lower levels of anxiety when they chose to start meditating. 

 

Researchers found that those who read science fiction regularly in middle school had higher rates of 

majoring in a STEM (science, technology, engineering, and math) field in college, on average, 

compared to those who didn’t read science fiction. It’s possible that those who choose to read science 

fiction regularly in middle school were also disproportionately those most interested in science classes 

since kindergarten. 

 

Researchers found that elementary school children who participate in a game-based learning program 

for math had higher levels of math confidence, on average, compared to those who did not participate 

in the program. It’s possible that those elementary school children assigned to the game-based learning 

program for math were, on average, more interested in math and confident in their ability from the 

outset.  

 

Experimental condition 3: “Higher/lower” 

 

Researchers found that taking nutritional supplements every day was associated with a higher muscle 

mass among senior citizens. 

 

Researchers found that meditating at least three times a week was associated with a lower level of 

anxiety among adults.  

 

Researchers found that reading science fiction regularly in middle school was associated with higher 

rates of majoring in a STEM (science, technology, engineering, and math) field in college. 

 

Researchers found that participating in a game-based learning program for math was associated with 

higher levels of math confidence among elementary school children. 
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Experimental condition 4: “Increased/decreased” 

 

Researchers found that taking nutritional supplements every day was associated with increased muscle 

mass among senior citizens. 

 

Researchers found that meditating at least three times a week was associated with decreased levels of 

anxiety among adults.  

 

Researchers found that reading science fiction regularly in middle school was associated with increased 

rates of majoring in a STEM (science, technology, engineering, and math) field in college. 

 

Researchers found that participating in a game-based learning program for math was associated with 

increased levels of math confidence among elementary school children. 

 

Experimental condition 5: “Led to” 

 

Researchers found that taking nutritional supplements every day led to an increase in muscle mass 

among senior citizens. 

 

Researchers found that meditating at least three times a week led to a decrease in anxiety among adults.  

 

Researchers found that reading science fiction regularly in middle school led to an increased chance of 

majoring in a STEM (science, technology, engineering, and math) field in college. 

 

Researchers found that participating in a game-based learning program for math led to increased math 

confidence among elementary school children. 

 

Experimental condition 6: “Caused” 

 

Researchers found that taking nutritional supplements every day caused an increase in muscle mass 

among senior citizens. 

 

Researchers found that meditating at least three times a week caused a decrease in anxiety among adults.  

 

Researchers found that reading science fiction regularly in middle school caused an increased chance 

of majoring in a STEM (science, technology, engineering, and math) field in college. 

 

Researchers found that participating in a game-based learning program for math caused an increase in 

math confidence among elementary school children. 


