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ABSTRACT 

 

Using simulation-based inference (SBI), such as randomization tests, as the primary vehicle for 

introducing students to the logic and scope of statistical inference has been advocated with the 

potential of improving student understanding of statistical inference and the statistical investigative 

process. Moving beyond the individual class activity, entirely revised introductory statistics 

curricula centering on these ideas have been developed and tested. Preliminary assessment data 

have been mostly positive. In this paper, we discuss three years of cross-institutional tertiary-level 

data from the United States comparing SBI-focused curricula and non-SBI curricula (86 distinct 

institutions). We examined several pre/post measures of conceptual understanding in the 

introductory algebra-based course using multi-level modelling to incorporate student-level, 

instructor-level, and institutional-level covariates. We found that pre-course student characteristics 

(e.g., prior knowledge) were the strongest predictors of student learning, but also that textbook 

choice can still have a meaningful impact on student understanding of key statistical concepts. In 

particular, textbook choice was the strongest “modifiable” predictor of student outcomes of those 

examined, with simulation-based inference texts yielding the largest improvements in student 

learning outcomes. Further research is needed to elucidate the aspects of SBI curricula that 

contribute to observed student learning gains. 

 

Keywords: Statistics education research; Randomization tests; Multi-level models 
 

1. INTRODUCTION 

 

The demands for a statistically literate society are increasing, and the introductory statistics course 

remains the primary venue for learning statistics for many secondary and tertiary students. As statistics 

and data science content reaches broader audiences of students, statistics educators have argued for 

changes in technology, pedagogy, and content (e.g., Cobb, 1992; Moore, 1997). Around this time, 
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Garfield (1995; see also Garfield & Ben-Zvi, 2007) illustrated how theories of learning could be applied 

to statistics education, namely students actively constructing their knowledge through active learning, 

practice, technology, and consistent and helpful feedback. These recommendations culminated in the 

first GAISE (Guidelines for Assessment and Instruction in Statistics Education) college report (Aliaga 

et al., 2005), but Garfield et al. (2002) found that although many instructors had made changes in their 

courses with respect to technology, use of genuine data and projects, the changes were slow in 

developing. Assessment results (delMas et al., 2007) often found students still struggling with key ideas, 

including how to interpret and correctly use p-values. Anecdotally, students reviewing for the final 

exam in the course would still ask instructors, “now that I have my p-value, do I want it to be large or 

small?” indicating they were learning the mechanics of the content but not understanding the big ideas 

of the course.  

More recent calls for reform have focused on not only pedagogy and assessment methods, but also 

course content. Studies have shown that engaging students in modeling and generating distributions 

(e.g., Doerr & English, 2003; Konold et al., 2007) helps them understand randomness and chance, as 

well as providing explicit experience with sampling variability. As noted by Lee et al. (2015), prior 

research (e.g., Garfield et al., 2012; Lane-Getaz, 2007; Saldanha & Thompson, 2002) found that a three-

tiered approach to constructing an inference problem, problems/models, repeated samples, and 

sampling distributions, appears to help students and teachers better conceptualize statistical inference. 

The argument for heavier use of simulation to teach the logic and scope of inference was brought to the 

forefront by Cobb’s (2007) call to center the introductory curriculum around the reasoning and logic of 

statistical inference, rather than around the normal distribution. Cobb advocated persuasively for using 

repeated sampling and re-randomization, often starting with tactile simulations, to introduce students 

to the logic of statistical inference before proceeding to more traditional inference procedures. This 

supports students in developing conceptual understanding of confidence intervals and p-values with 

minimal mathematical distractions such as the “machinery of numerical approximations based on the 

normal distribution and its many subsidiary cogs” (para. 1). By not waiting to teach statistic inference 

after “the culmination of a long development of prerequisite material on sampling distributions, 

formulas for standard errors, standard reference distributions, central limit theorems, and formulas for 

standardizing values” (Lock et al., 2014, para. 1), simulation-based methods allow more emphasis on 

the interpretation and underlying logic of statistic inference, including the connection between 

randomness in study design and inferential reasoning. In particular, students can learn about the overall 

statistical process and have the tools to answer a genuine research question much earlier in the course 

(Roy et al., 2014). Throughout the course, instruction can focus repeatedly on the overall statistical 

process, rather than positioning data collection, data exploration, probability, and statistical inference 

as unrelated topics. Simulation-based inference can also make abstract concepts more concrete (Chance 

& Rossman, 2006), with the potential to make student thinking visible (Case & Jacobbe, 2018), 

enhancing student understanding as well as the instructor’s ability to diagnose misunderstandings. Such 

changes to the content and sequencing of the material, now often dubbed “simulation-based inference” 

(SBI), keeps students “closer to the data,” and naturally allows for more active learning and construction 

of knowledge in the classroom. 

In the years since Cobb’s (2007) recommendation, several new textbooks (see Section 2) have taken 

different paths for implementing his suggestions and “simulation-based inference methods are 

increasingly common in introductory statistics courses as a complement or substitute for theory-based 

inference” (Case & Jacobbe, 2018). Many of these ideas overlap with an overhaul of New Zealand high 

school curriculum and a “staged development path” to help students foster a more intuitive 

understanding of statistical inference (Wild et al., 2011, p. 247). Zieffler et al. (2008) contributed by 

describing the state of the field regarding informal statistical inference, using simulation as a key tool 

to illustrate informal statistical inference in the classroom. Lee et al. (2015) argued there are many 

positive aspects of the SBI approach, but also opportunities to improve and enhance that approach. 

Formal classroom research evaluating these proposed curricular changes is still emerging. 

Preliminary assessment results, primarily at single institutions, have shown promising benefits to a 

simulation-based approach. For example, Maurer and Lock (2015) found advantages to using 

bootstrapping when introducing confidence intervals. Hildreth et al. (2018) saw improvements from 

using simulation-based inference curriculum on six key statistical concepts. Beckman et al. (2017) saw 

improved cognitive transfer outcomes when comparing a simulation-based curriculum to a traditional 
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approach. Pfannkuch and Budgett (2014) found that visual inference tools using bootstrapping and 

randomization tests facilitated the development of statistical inferential concepts, while Lane-Getaz 

(2017) and Reaburn (2014) found students better able to define and use p-values in a course using 

simulations. Three papers examining outcomes from the Introduction to Statistical Investigations (ISI) 

curriculum (Chance & McGaughey, 2014; Tintle et al., 2011, 2012) have found similar or improved 

pre- to post-course outcomes when using SBI curricula compared to prior consensus curricula (e.g., 

Advanced Placement Statistics; Roberts et al., 1999). 

The literature to date has focused primarily on smaller samples from limited numbers of institutions, 

often comparing only two curricula. This has led some to call for additional studies to enhance 

generalizability, including measures of student demographics, measures of student ability, and 

measures of student attitudes (e.g., Hildreth et al., 2018). Furthermore, the unique pedagogical aspects, 

ordering, and focus of the International Statistics Institute (ISI) curriculum on the overarching statistical 

process (see Tintle et al., 2011, 2014 for additional details), combined with promising preliminary data 

(e.g., Tintle et al., 2011, 2012) lead to questions about whether unique aspects of the ISI curriculum 

facilitate different learning outcomes compared to other SBI curricula. To investigate these questions 

and others, our team led a multi-institution, three-year assessment project (2014–2017) with funding 

from the National Science Foundation (DUE-1323210). We collected data on student, instructor, and 

institutional characteristics, and both pre- and post-course outcomes, with an emphasis on students’ 

conceptual understanding. In this project, we utilized an adapted form of the Comprehensive 

Assessment of Outcomes in Statistics (CAOS) instrument, a widely used and validated instrument 

focused on conceptual understanding (Section 3.4). 

In this paper we address the following research questions:  

1. Are there differences in pre/post-changes in conceptual understanding depending on the type of 

curricula used? In particular, do students with simulation-based inference curricula show 

similar gains to non-simulation-based curricula across course content areas? If not, what are 

areas of weakness that can be addressed through curricular revision? Are these areas different 

for the ISI curriculum?  

2. How does textbook choice compare to other student-level (e.g., ACT score), instructor-level 

(including years of experience), or classroom-level characteristics (including student 

background, instructor experience) in terms of impact on student conceptual learning gains pre- 

to post- course? 

Although textbook choice is likely a proxy for several variables and this multi-institutional 

observational study will not reveal the components (e.g., use of active learning, focus on modeling, 

more student-driven technology, teacher experience, instructional time) that are most impactful on 

student learning, we hope to gain insight across a variety of courses as to where introductory tertiary 

students are still struggling, and whether the gains and struggles differ across textbook choices and 

types of students. 

 

2. SIMULATION-BASED INFERENCE TEXTBOOKS 

 

The last few years have seen the development of several full curricula/textbooks for introductory 

algebra-based statistics courses that focus on simulation-based inference (SBI). In each case, instruction 

on inferential methods is preceded by simulations illustrating the reasoning behind the methods. Some 

of the key distinctions between these approaches include: 

• When simulations are first used for inference.  

• Whether or not bootstrapping is highlighted as a simulation method in addition to 

randomization tests. 

• Technology used.  

• Target audience. 

These distinctions are summarized in Table 1. In the teacher survey, instructors were asked to indicate 

the textbook they had adopted, but over the course of the three years of data collection described here, 

different editions could have been used, so in the table we focus on the main title of the text and not 

the edition. 



4 

Table 1. Textbooks using simulation-based inference (SBI) in the introductory, algebra-based 

statistics course 

 

Textbook First use of SBI Bootstrapping Technology Target 

audience 

Introduction to Statistical 

Investigations (ISI) (Tintle et al., 

2015) 
 

Ch. 1. 
 

No Rossman/Chance 

applets 

Algebra 

pre-req 

Statistics: Unlocking the Power of 

Data (Lock5) (Lock et al., 2013) 

 

Ch. 3. Yes StatKey Algebra 

pre-req 

Statistical Reasoning in Sports 

(Tabor & Franklin, 2013) 
 

Ch. 1. No Graphing 

calculator 

High school 

CATALST Project’s Statistical 

Thinking: A simulation approach to 

modeling uncertainty (Zieffler & 

Catalysts for Change, 2015) 
 

Ch. 1. Yes TinkerPlotsTM Algebra 

pre-req 

Introductory Statistics with 

Randomization and Simulation 

(Diez et al., 2014) 

Ch. 2. 
 

Yes R Algebra 

pre-req 

 

Several instructors also indicated they did not use a textbook or solely used their own materials that 

were hybrids of these approaches (e.g., Hildreth et al., 2018; Malone & Hooks, 2012). We did not 

evaluate the extent of simulation-based inference in these materials. Textbooks also varied by the extent 

of coverage of parametric methods. For example, the original CATALST curriculum did very little with 

parametric tests (two-sample t-tests), compared to the ISI curriculum, which included SBI methods 

before ANOVA, regression, and Chi-square tests. We did not ask instructors to indicate the final chapter 

they covered in the course. 

 

3. METHOD 

 

3.1.  RECRUTING FACULTY/STUDENT PARTICIPANTS 

 

From 2013−2016, we sent an open call to introductory statistics faculty, primarily in the United 

States, using email listservs (e.g., ASA Section on Statistics Education, Isolated Statisticians, SIGMAA 

on Statistics Education). Faculty were asked to give their students an instrument assessing students’ 

conceptual understanding of statistics and attitudes towards statistics (see Section 3.4) through 

SurveyMonkey during the first and last weeks of the term. Most faculty offered some incentive to their 

students (e.g., credit on a homework assignment) for participating. The instrument was generally given 

outside of regular class time, though a few instructors did include the concept inventory as part of the 

final exam. Section-level response rates were above 90% on the pre-test (mean = 0.995, SD = 0.196) 

and above 80% on the post-test (mean = 0.833, SD = 0.368), but about 25% of sections showed a 

response rate below 73% on the post-test.  

 

3.2.  DATA CLEANING AND INCLUSION CRITERIA 

 

Examples of the lengthy data cleaning tasks included tracking students who changed instructors 

after the pre-test and reconciling discrepancies in demographic data between pre and post 

administrations (e.g., students or instructors providing inconsistent responses for sex, self-reported 

GPAs, age). Responses that were similar were averaged and discrepant responses (e.g., pre-post GPA 

differed by more than 0.25) were dropped. Students also self-reported SAT or ACT scores, which were 

converted into a z-score based on the means and standard deviations of each scale in our dataset (which 

were similar to nationally reported values). Text responses to numeric questions were converted (e.g., 

“I think my GPA is around 3.2”) and GPAs larger than 4.0 were truncated (in later versions of the 
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instrument, we ask students whether their institution’s GPA is reported on a 4- or 5-point scale to allow 

rescaling). The cleaned student dataset was merged with a cleaned version of the teacher inventory data. 

We removed students who did not take at least 10 minutes to complete the instrument, who answered 

fewer than 80% of the questions on either test, who did not take both pre and post instruments (about 

50% each year), or who opted out of permitting us to use their data for research purposes. Remaining 

students were matched pre to post and duplicate records removed (keeping the more complete record). 

The dataset is available from the authors upon request.  

For the analyses in this paper, we removed students in statistics courses with a calculus prerequisite 

(typically aimed at more mathematically inclined students than algebra-based course), as well as 793 

high school students (see Roy & Mcdonnel, 2018) for preliminary analysis of the high school students. 

Lastly, students with an achievable gain of -1.1 and lower (e.g., 78% correct on the pre-test, 33% correct 

on the post-test) were removed prior to analysis (less than 0.2% of students each year).  

 

3.3.  STUDY PARTICIPANTS 

 

After applying the inclusion criteria described in Section 3.2, the final sample size was 10,514 

students, across 503 sections, 194 instructors, and 86 institutions for academic years 2014/15, 2015/16 

and 2016/17 (many instructors/institutions participated in multiple terms). Table 2 summarizes key 

student and instructor characteristics noted from the demographic survey and the instructor survey. Note 

that 31% of the instructors were tenured, 20% tenure track, 21% full-time lecturer, and 27% graduate 

teaching assistants. 

 

Table 2. Student and instructor characteristics 

 

Students No previous stat 

course 

First generation 

student (y2, 3) 

Taking course for 

major 

% Female 

 66.6% 24.4% 78.5% 65.0% 

Instructors < “very little” data 

experience 

No knowledge of 

GAISE 

Mean/Median years 

teaching statistics 
% Female 

 35.2% 35.9% 9.7/6 55.2% 

 

Appendix Table A.4 summarizes the course prerequisite, type of department teaching the course 

(statistics or statistical sciences, mathematics, and other), Carnegie Classification, and student type as 

reported by instructors at each institution. For student type, most students were lower classmen 

(freshmen or sophomores), with similar breakdown as to whether the course aimed to be a (lower 

division or upper division) general education course vs. a required course in their academic discipline.  

 

3.4.  INSTRUMENTS 

 

We used a 32-question multiple-choice concept inventory adapted from the Comprehensive 

Assessment of Outcomes in Statistics (CAOS) instrument from the University of Minnesota (delMas et 

al., 2007), which is a well-established assessment instrument for assessing outcomes of an introductory 

college statistics course. Rather than use an instrument focused only on inferential reasoning (e.g., 

Lane-Getaz, 2007; Tobias-Lara & Gomez-Blancarte, 2019) or one focused on more modern topics (e.g., 

Ziegler & Garfield, 2018), we wanted to first compare student performance on items designed for non-

simulation-based courses. In validating and revising the CAOS instrument, delMas et al. (2007) asked 

statistics education experts and instructors to rate their agreement that the questions covered desired 

learning goals for any tertiary introductory statistics course. This validation process occurred before the 

emerging increase of textbooks centering around SBI. Topics on this inventory include data collection, 

simulation/probability (but not simulation-based inference), descriptive statistics, confidence intervals, 

significance tests, and scope of conclusions—content covered in both SBI and non-SBI courses. Our 

modifications to the CAOS instrument included revising some less frequently chosen distractors, 

reordering questions, and adding several new variations/items which covered questions related to the 

impact of sample size and common misinterpretations of the p-value (large p-value is evidence of the 
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null being true, confusing p-value with sample statistics). Appendix Table A.1 describes the questions 

on our instrument, including these eight new questions, with notes on the most similar CAOS questions. 

Appendix Table A.2 notes changes to the instrument made after Year 1. This concept inventory was 

combined with the SATS-36 instrument (Student Attitudes Toward Statistics; Schau, 2003) into one 

instrument.  

As discussed in Tintle et al. (2018), the instrument showed good reliability (Cronbach’s alpha > 

0.65), construct validity (e.g., stronger item-total correlations post-course than pre-course), and good 

predictive validity (moderate correlations with external measures of quantitative understanding (e.g., 

ACT score, r = 0.39); associations with positive attitudes and post-test scores (r > 0.25 for 5 of 6 SATS 

subscales). Additional details on reliability and validity for a single year of this sample (2016-2017) are 

provided in Tintle et al (2018).  

For analysis, the 36 questions on the concept inventory were regrouped into 24 question-sets, so 

sets of 2−3 questions with the same prompt and assessment goal (e.g., a series of valid/invalid 

statements of a confidence level interpretation) were scored together (see Appendix Table A.3). Each 

question and question set were coded as correct or incorrect (with partial credit on question sets), and 

the percentage correct was computed from the 24 possible points.  

At the beginning of the course, instructors indicated the number of sections they taught, class sizes, 

and textbook choice. At the conclusion of the course, instructors were also asked to complete a survey 

(“teaching inventory”) about their own background and teaching methods as well as details of the course 

(e.g., number of students, meeting time, use of active learning, familiarity with the GAISE guidelines, 

type of institution). The instructor questions were loosely based on Zieffler et al., 2012 (see also Fry, 

2014; Parker et al., 2014). 

 

4. RESULTS 

 

4.1.  GAINS IN CONCEPTUAL UNDERSTANDING  

 

On the pre-test, students performed similarly across all three textbook classifications (Table 3), with 

most students answering between 35% and 55% of the 24 question sets correctly. Patterns were similar 

in the three years of data (details not shown). 

 

Table 3. Student pre-test scores by textbook classification (Years 1-3) 

 
 ISI Other SBI NonSBI 

n 2872 3251 4139 

Mean 0.477 0.482 0.471 

SD 0.113 0.114 0.112 

 

The primary response variable of interest was students’ post-course performance on the concept 

inventory. To adjust for pre-test scores and possible ceiling effects, we also considered achievable gain 

= (post – pre)/(1 – pre) as a measure of student improvement (aka “single-student normalized gain”, 

e.g., Colt et al., 2011; Hake, 1998). Table 4 shows the mean achievable gain scores across the textbooks 

for the three years. Although the achievable gains were modest, we saw a consistent pattern across the 

years. Notably, non-SBI curricula have the lowest achievable gain, followed by Other SBI curricula 

and the ISI curriculum consistently showing the largest achievable gain on average. The patterns held 

true after adjusting for student background data as discussed in Section 4.2. Also notable was the 

considerable within-section variability (Figure 1 for Year 3).  
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Table 4. Mean achievable gain scores for 2014/2015–2016/2017 school years,  

across textbook classifications 

 

 Ach gain Overall ISI Other SBI NonSBI 

Year 1 Mean 

SD 

0.148 

0.261 

0.179 

0.262 

0.168 

0.264 

0.109 

0.254 

Year 2 Mean 

SD 

0.117 

0.250 

0.178 

0.248 

0.140 

0.259 

0.077 

0.239 

Year 3 Mean 

SD 

0.137 

0.257 

0.173 

0.245 

0.158 

0.269 

0.076 

0.245 

 

 

 

 
 

Figure 1. Boxplots of achievable gain by textbook for 179 sections (Year 3).  

Red lines indicate averages by textbook classification. 

 

Table 5 compares the gains (post – pre) in the proportion correct for each subcategory of the concept 

scale by textbook classification. Overall, student gains were highest for the confidence intervals and 

tests of significance subscales. There was evidence of higher gains with the simulation-based 

approaches (ISI and Other SBI), particularly in questions about data collection, significance testing, 

and simulation, with the ISI curriculum outpacing Other SBI curricula on significance, and Other SBI 

outpacing ISI on confidence intervals. The three groups were more similar for questions about 

descriptive statistics.  

 

Table 5. Comparison of pre-concept scores and gains in proportion correct overall by textbook 

across concept scale subcategories 

 

Subcategory of 

conceptual 

inventory (# items) 

Pre-test 

scores 

 Mean (SD) 

Mean Gain (SD) 

Overall  ISI Other SBI NonSBI 

Data collection (4) 
0.538 

(0.211) 

0.057 

(0.275) 

0.090 

(0.281) 

0.090 

(0.273) 

0.012 

(0.266) 

Descriptive (7) 
0.484 

(0.205) 

0.054 

(0.222) 

0.060 

(0.221) 

0.056 

(0.221) 

0.050 

(0.222) 

Confidence Int (5) 
0.347 

(0.174) 

0.113 

(0.258) 

0.105 

(0.253) 

0.134 

(0.262) 

0.104 

(0.257) 

Significance (10) 
0.559 

(0.182) 

0.101 

(0.222) 

0.143 

(0.218) 

0.102 

(0.220) 

0.070 

(0.220) 

Simulation (7) 
0.405 

(0.229) 

0.070 

(0.271) 

0.109 

(0.268) 

0.090 

(0.272) 

0.028 

(0.267) 
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Figure 2 compares the textbook categories on the individual questions, illustrating the variability in 

gains on individual questions within the same concept subcategory. Green lines indicate questions with 

higher average scores on the post-test compared to the pre-test. Table 6 highlights several interesting 

comparisons with a complete summary of results for all questions in the Appendix (Table A.3). 

 

 

 

 
 

Figure 2. Question by question pre/post-test performance by textbook category  

(Triads correspond to ISI, SBI, NonSBI) 
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Table 6. Selected question by question comparisons on mean pre-test, post-test,  

and achievable gain scores 

 
 ISI  Other SBI  NonSBI 

 
Pre Post 

Ach 

Gain 

 Pre Post Ach 

Gain 

 Pre Post Ach 

Gain 

Highest pre-test scores            

Q21: Comparing two 

distributions 

0.77 0.90 0.56  0.76 0.89 0.53  0.76 0.82 0.26 

Q33: Matching graph to 

variable description 

0.80 0.85 0.25  0.82 0.86 0.23  0.81 0.84 0.14 

Largest SBI improvement            

Q27: Recognizing the goal 

of a small p-value 

0.45 0.90 0.84  0.46 0.88 0.78  0.42 0.76 0.60 

Q28: Recognize p-value is 

not probability of null 

0.57 0.83 0.59  0.58 0.79 0.51  0.56 0.74 0.42 

Q31: Recognize p-value is 

not the statistic 

0.54 0.79 0.54  0.57 0.77 0.46  0.52 0.73 0.43 

Q29: Recognize valid 

interpretation of p-value 

0.45 0.68 0.42  0.46 0.59 0.24  0.44 0.50 0.12 

Q43: Inferential reasoning 0.40 0.62 0.36  0.43 0.58 0.25  0.38 0.42 0.08 

Q46b: Recognize impact 

of confidence level on 

width  

0.32 0.60 0.41  0.30 0.57 0.38  0.32 0.57 0.36 

Q38: Recognizing correct 

simulation model 

0.59 0.89 0.72  0.62 0.82 0.53  0.52 0.61 0.18 

Largest NonSBI improvement           

Q32: Matching graph to 

description  

0.47 0.51 0.08  0.50 0.52 0.02  0.48 0.57 0.17 

Lowest improvement (all)            

Q23: Small sample size 0.88 0.77 -0.77  0.86 0.77 -0.64  0.86 0.76 -0.69 

Q24: Large p-value is 

evidence for the null 

0.78 0.65 -0.58  0.75 0.61 -0.60  0.80 0.66 -0.65 

Q25: Association vs. 

causation 

0.57 0.58 0.01  0.55 0.61 0.13  0.57 0.51 -0.13 

Q17: Most appropriate 

graph 

0.25 0.22 -0.04  0.26 0.22 -0.04  0.21 0.21 0.00 

Q42: Purpose of random 

assignment in study design 

0.28 0.38 0.14  0.28 0.36 0.11  0.28 0.25 -0.04 

Poorest post-test scores            

Q26: Necessary sample 

size for US population 

0.13 0.21 0.10  0.13 0.25 0.14  0.15 0.27 0.14 

 

 

High pre-test scores (above 0.75) 

• On the pre-test, students performed most strongly on Q21 and Q33, which dealt with comparing 

two dotplots of unequal sample size (one question with three options rather than CAOS’ three 

valid/invalid statements) and selecting the histogram best matched to a variable description. 

(Our instrument did not include a CAOS question regarding linear associations as we have 

found students typically score highly on this question at the beginning of the course as well.) 

• We also note from Figure 2 that students tended to score higher on pre-test Questions 23 and 

24, but then had lower performance on the post-test (see below).    

Largest improvements with SBI curricula (gain > 0.20) 

• All curricula, but especially the SBI-based students, showed substantial improvement 

recognizing the purpose of a p-value (Q27). Similarly, all curricula showed substantial 

improvement in the ability to recognize p-value interpretations as the probability of the 

alternative hypothesis (Q28) and as the difference in conditional proportions (Q31) as incorrect. 
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• SBI curricula showed more improvement recognizing a correct interpretation of a p-value 

(Q29) and in making a conclusion from a p-value (Q43), with less growth by non-SBI students, 

on average. 

• SBI curricula showed strong improvement in recognizing a correct simulation model (Q38), 

with little growth by non-SBI students on average, though many students (across textbook 

classifications) continued to consider other invalid “simulation models” (e.g., repeating the 

study) to be valid as well (Q37, Q39).   

• Lastly, all curricula showed substaintial gains in student ability to recognize the impact of 

increasing the confidence level on the confidence interval width (Q46b). 

More improvement with Non-SBI curricula than SBI 

• The non-SBI students gained more on a question asking them to match a histogram to a variable 

description (Q32), but all three categories were around 50% pre and post. We also note the SBI 

curricula showed similar performance to non-SBI students on other descriptive statistics 

questions, a topic often assumed to be not emphaized in the new curricula. 

Low improvement across all curricula (gains < 0.01) 

• Across textbook categories, students tended to decrease in performance on questions asking 

about the role of sample size (Q23) and whether large p-values provide evidence in favor of the 

null hypothesis (Q24). This latter tendency is also shown in Q45, on which students indicate a 

value inside the confidence interval provides evidence for the null hypothesis at the beginning 

and the end of the course.  

• Q17: This question asked students to select the most appropriate graph of a quantitative 

variable. At the beginning and end of the course, on average, students selected a case-value 

graph that looked bell-shaped, rather than one that best demonstrated the distribution of the 

variable. 

• Students did not show much improvement on a question asking them to recognize that a causal 

conclusion could not be drawn from an observational study (Q25), though improvement was 

better with Other SBI students.  

• SBI students gained more on average, though still not a lot, on a question asking about the 

purpose of random assignment (Q42), compared to a decrease for non-SBI students. However, 

we would have expected more improvement given the strong focus and reinforcement by those 

texts on the topic. 

Poor post-course scores (post < 0.25) 

• For Q26, students demonstrated poor performance on a question asking about the necessary 

sample size to adequately represent all 310 million U.S. residents, at the beginning and end of 

the course.   

 

4.2.  MULTILEVEL MODELS 

 

Given the nested structure of our data, we used multi-level models to estimate the relative impact 

of textbook choice on student gains after accounting for a variety of covariates. There were some modest 

differences in the instrument in Year 1 (see Appendix A.2), so the primary modelling results were 

obtained by fitting models on data that pooled Years 2 and 3 (n = 7,536). Using a four-level model 

(institution, instructor, section, student), the intraclass correlation coefficient for the null model using 

achievable gain as the response is around 11% (similar for each year). By far, most of the variation is 

at the student level. Most of the remaining variation appeared to be at the institution level (6.6%) 

compared to the instructor level (3.5%) and section level (1%). Table 7 lists the variables, by level, used 

to build the multi-level models. Rather than using achievable gain in these models, we used gain 

including pre-test score and pre-test score2 as predictors. 
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Table 7. Variables using in model building 

 

Student variables Section variables Instructor variables Institution variables 

• Pre-concept (quadratic) 

• Pre-attitudes (6) 

• Other SATS-36 questions 

(math competence, math 

performance, grade 

expectation, mastering 

confidence, stats career 

usage, major course, 

likelihood would choose, 

why took course) 

• GPA (quadratic) 

• Math SAT/ACT z-score 

(quadratic) 

• Age 

• Sex (Male or Female) 

• Previous stat course (2) 

• Area of study 

• First generation 

• Race (white, binary) 

• Status (year in school) 

• Average pre-concept 

• Average pre-attitude 

(6) 

• Average overall 

attituded 

• Section level GPA 

• Avg SAT/ACT z-score 

• Fall or Winter/Spring 

• Class size (start) 

• Response rate 

 

Instructor reported 

• Time of day (morning, 

midday, or after 2pm) 

• Length of class session 

• Math prereq 

• Incentivea for taking 

instrument, location, 

timing (codes) 

• Type of student 

(upper/lower/GE/reg) 

• Lecture type (primary 

delivery of new 

content) (2) 

• Percentage of class 

time in lecture 

• Years of experience 

(overall intro stat) 

• Experience 

analyzing data 

• Position type 

• Type of advanced 

degree 

• Use of TA for 

leading section 

• GAISE familiarity 

• Attended ISI 

workshop 

• Sex (binary) 

• Textbook (ISI, 

OtherSBI, NonSBI) 

• Dept typeb 

• Schedule (# 

weeks)c 

• Carnegie 

classification 

• Average 

attitudes and 

overall GPA, 

SAT/ACT z-

scores, pre-test, 

and response 

rate (11) 

 

aIncentive offered for the post test was categorized as none, low stakes, high stakes (e.g, part of final exam). We 

also considered whether the post-test was given in or outside of class. Pre-test classifications were similar. 
bOne institution had multiple instructors from different departments.  
cOne institution had a year-long “dual-enrollment” course for college credit. 
dOverall attitude was computed by averaging the SAT scales of affect, cognitive competence, interest, and value. 

 

 

From the large list of variables in Table 7, we explored several model building strategies. Initially, 

we identified significant variables after using imputation (with the ‘amelia’ package v. 1.7.6 in R) on 

the variables with high rates of missingness (e.g., GPA, SAT/ACT z-score), without including the 

textbook variable. First, we systematically added in variables from different categories (e.g., attitude 

variables, other student-level variables, section-level variables, etc.), and then used backwards 

elimination to reduce the list of explanatory variables at each step. With this approach we identified 20 

variables with p-values below 0.05 (using lmer, and Anova from the ‘car’ package v. 3.0-12 in R) and 

a model that explained 38% of the variation in gains (conditional R2 from ‘performance’ package v. 

0.8.0 in R). Second, we began with a model with all the variables and manually used backwards 

elimination down to 33 variables. These variables were combined with any additional variables from 

the initial set of 20, textbook, and some interactions of interest were added. These variables were then 

applied to the non-imputed data (n = 3,036). This model was then trimmed to 24 variables. Table 8 

shows the first 15 terms, sorted by significance (using t and 2 statistics). Apart from the interaction 

between student gender and section value pre, the largest VIF values (from performance package) fall 

below 7. 

 

  

https://cran.r-project.org/web/packages/Amelia/index.html
https://cran.r-project.org/web/packages/car/index.html
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Table 8. Most significant variables from final multi-level model 

 

Variable Coefficient t-statistic 2 statistic 

Pre-test z-score -0.073 -41.70 1739 

GPA z-score 0.037 11.40 254 

SAT/ACT z-score 0.018 7.71 112 

Pre-test z-score2 0.008 7.37 54.3 

GPA z-score2 0.010 6.88 50.3 

Textbook classification   55.5 

   NonSBI -0.047 -7.20  

   Other SBI -0.013 -2.126  

   ISI (baseline)    

Value 0.015 5.74 32.9 

Sex (Male) 0.179 2.45 26.5 

Institution SAT/ACT 0.054 4.93 24.3 

Mastering confidence 0.007 4.69 22.0 

Institution overall attitude -0.135 -4.05 16.4 

Institution interest 0.092 4.03 16.3 

First gen (yes) -0.015 -3.88 15.0 

Effort -0.008 -3.56 12.7 

Female  Section value 0.037 3.35 11.5 

 

 

By far, the strongest predictors of gain on the 24-point concept inventory were the students’ prior 

abilities and performance as measured by pre-test score, GPA, and SAT/ACT (accounting for more 

than 20% of the variation in student gains). The relationship with pre-test score was concave up: 

students with below average pre-test scores showed the strongest gains. The relationships with GPA 

and SAT/ACT were also concave up, showing increasingly higher gains for above average students. 

Overall, males and those who had confidence in their ability to master the material, showed higher 

gains. 

After adjusting for these variables, textbook classification was the next strongest predictor, with 

non-SBI students showing lower gains on average compared to ISI students, and not a large difference 

between ISI and Other SBI students. The coefficients of the textbook classifications aligned with the 

earlier results in unadjusted analyses (e.g., Table 4). Similarly, using forward selection in a single-level 

model with the same predictors, textbook was the fourth variable to enter the model after pre-concept 

score, SAT/ACT, and GPA. 

First generation students, and those who believed they would put a lot of effort into the course, on 

average exhibited lower gains. Surprisingly, several institution-level variables remained in this final 

model. Students at institutions with higher average SAT/ACT scores and higher aggregated interest in 

statistics, showed higher gains on average, but students at institutions with a higher overall attitude 

score, showed lower average gains. These characteristics appear more important to the model than 

Carnegie Classification. 

Of the interactions with textbook classification, student sex, and instructor sex, the strongest 

appeared to be an interaction between section-level value of statistics and student sex. Figure 3 reflects 

this interaction, indicating that sections with higher average value of statistics more positively 

influenced students who identified as female rather than male. We can cautiously interpret that males 

are less impacted by this element of classroom culture, whereas females gain more when surrounded 

by peers that value the study of statistics. Another interesting but less significant interaction was GPA 

 textbook (not shown), which indicated that the slope of GPA was largest for the ISI instructors and 

smallest for the non-SBI instructors, resulting in a larger difference between textbooks for those 

students entering the course with above average GPAs.    
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Figure 3. Interaction between student-provided sex and value of statistics 

 

 

4.3.  SENSITIVITY ANALYSES 

 

We performed three sensitivity analyses (details not shown). First, to confirm that model results 

were robust by year, we fit the final model on Years 2 and 3 separately and estimated similar effects 

for all variables in the final model. We also noted the effects were similar when run with the imputed 

data and the non-imputed data. Finally, we used propensity score weighting to create more equivalent 

groups between instructors choosing SBI and non-SBI curricula. After creating these more equivalent 

groups, models comparing groups estimated similar sized differences in gain between curricula 

(Appendix Figure A.1).  

We also refit the final model for only the students who scored below average on the pre-test. The 

textbook classification variable was still highly significant, with coefficients of -0.043 for NonSBI and 

-0.0065 for Other SBI compared to ISI. We also focused on the relationship between gain and the pre-

test score for SBI students and non-SBI students. Figure 4 suggests that students with lower pre-test 

scores tend to see slightly higher gains with the SBI curricula, and similar average gains with students 

who scored above average on the pre-test. 

 

 
 

Figure 4. Smoother showing quadratic relationship with pre-concept scores for SBI (ISI and non-

ISI) curricula and non-SBI curricula 
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5. DISCUSSION 

 

After collecting data across multiple instructors and institutions for three years, we were able to 

take a deeper look at numerous variables potentially related to student learning in introductory statistics, 

as well as explore differences in student understanding arising from simulation-based and non-

simulation-based textbooks. This dataset provided us the opportunity to update earlier reports (e.g., 

delMas et al., 2007), to expand upon more recent studies (e.g., Hildredth et al., 2018), and to include 

variables at several levels in the educational process, the latter allowing us to further explore what 

components of the student experience (e.g., section-level and institution-level) are and are not 

associated with students’ conceptual learning in introductory statistics courses.  

We continue to see trends similar to those observed in these earlier papers. For example, students’ 

attitudes coming into a course appear related to their learning, including their feelings of cognitive 

competence and prior performance in mathematics courses. Students’ attitudes, however, are not as 

effective predictors as their previous performance (e.g., GPA, SAT/ACT). In fact, students’ GPA, 

SAT/ACT score, and prior understanding (pre-test score) were the three variables most predictive of 

students’ gain in conceptual understanding and accounted for approximately 23% of the variation in 

students’ gain. Of interest is the quadratic nature of these associations, demonstrating the potential for 

larger gains in students who enter a course with less background knowledge, perhaps more so for SBI 

courses. Although the strength and form of these associations are in many ways expected, this leaves 

instructors with little consolation as none of these three factors are modifiable by the instructor of 

introductory statistics. Still, conversations about the value of statistics early in the course may help 

contribute to student gains. Institutional culture may also play a role, though perhaps more for students 

who identify as female rather than male.  

Although we cannot explain much of the instructor-to-instructor variation with our instructor level 

variables, we found that after adjusting for such instructor and institutional level effects in our multilevel 

model, the textbook choice effects were significant. In particular, our analysis points to textbook choice 

being the most important modifiable factor impacting students learning, with curricula using 

simulation-based inference (ISI and Other SBI) showing achievable gains of 14–18% compared to 7–

11% for non-SBI curricula (Table 4). This improvement was primarily concentrated in concepts relating 

to data collection, significance, and simulation—consistent with theoretical arguments about the 

potential benefits of SBI (Cobb, 2007). In particular, student performance on Question 27, recognizing 

that small rather than large p-values establish strong evidence in favor of a research conjecture, with 

many sections having 100% correct responses on the post-test, suggested that SBI students gained better 

understanding of the use of p-values in tests of significance. ISI tended to yield slightly higher 

achievable gain than Other SBI curricula, results that continued to hold in multivariable analyses, which 

accounted for a wide variety of other student, section, instructor, and institutional level variables. We 

also found a few differences across the simulation-based curricula. In particular, there were distinct 

subscales (e.g., confidence intervals) and questions (e.g., Q25 on the inventory) for which Other SBI 

curricula outperformed ISI and vice versa. We note, however, although these results are promising, the 

ultimate difference, on average, from textbook choice, is equivalent to an additional 1-2 points on the 

24 question-set inventory.  

 

5.1.  IMPLICATIONS FOR SBI TEACHING 

 

Although SBI methods show similar student impact among first and long-time instructors (Chance 

et al., 2017), these assessment results indicate there are still numerous areas that need particular 

attention when implementing these methods. When asked to select the graph representing a histogram 

for a table of data (Q17), both SBI and non-SBI students tended to favor graphs that represented bell-

shaped distributions rather than histograms. Introductory courses should focus more attention on 

identifying variables likely to follow a normal distribution and why. Furthermore, especially with the 

SBI approach, we encourage instructors to include graphs of other statistics (e.g., F-statistic, Chi-square 

statistic, Mean Absolute Difference) that do not follow a normal distribution and to emphasize to 

students that the variability in the null distribution is the key feature in inferential statistics. Although 

not assessed on our instrument, we also conjecture that use of SBI methods to supplement traditional 

instruction for “theory-based” approaches such as t-tests and Chi-square tests can improve student 
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understanding of the appropriate role of p-values and confidence intervals in statistical analyses, which 

may help students understand the limitations of statistical inference rather than rejecting its use.  

The results for Questions 37–39 were a bit discouraging because even students in a simulation-

based course could not correctly identify appropriate simulation strategies from situations that were not 

“simulations” (e.g., repeating the actual study). We recommend careful attention to the role of 

modelling (e.g., Garfield et al., 2012) and how the simulation model differs from the data production 

process. One suggestion is using more examples in which students are directly involved in the data 

collection process to help students differentiate observed data and simulated data. We have found that 

students also easily confuse “number of samples” with “sample size,” and the results for Q26 indicated 

that students appeared to need additional reinforcement on the role of sample size (and population size) 

in statistical analyses (though this was found to be an area of weakness across all textbook categories).  

We also note that all textbook groups had decreased performance from pre- to post-test on Q24, 

indicating that a large p-value can provide evidence for the null hypothesis. Instructors need to 

repeatedly remind students of the distinctions in these conclusions. Similarly, Q45 revealed a need for 

more discussion on the duality of confidence intervals and tests of significance, so students don’t see 

them as separate procedures/providing additional evidence, but rather two different ways of 

summarizing a study each with its pros/cons.  

 

5.2.  FUTURE DIRECTIONS 

 

More research is needed to identify the components of these novel curricula (e.g., focus on active 

learning, pedagogical knowledge of instructors, connection to the statistical investigation process) as 

they are most helpful in achieving these modest gains. Smaller, more focused studies could use 

randomization and/or cross-over designs to better illustrate the impact of lesson content and learning 

and teaching styles (e.g., Maurer & Lock, 2015). Focus-groups and think-aloud-protocols could be used 

to better understand how and when students make connections. Furthermore, we note the actual impact 

of SBI curricula on overall student understanding is relatively small. Better understanding of the reasons 

why SBI curricula are making some difference may also help point to areas of further innovation in SBI 

to increase the impact and/or suggest ways to translate the impact to other domains that showed less 

evidence of a difference (e.g., confidence intervals, descriptive statistics). Importantly, such 

experiments should include students from diverse backgrounds and institutions to ensure widespread 

generalizability, and to evaluate whether pedagogical best practices are similar across students and 

institutions. Further research is also needed to unpack how much simulation-based inference is 

necessary to reinforce student reasoning and whether the timing and sequencing of such discussions 

impact student performance. 

Additionally, recent evidence at single institutions (Tintle et al., 2018, see also Figure 4) has 

suggested that students entering the course with weaker quantitative backgrounds may be among those 

that benefit the most from SBI curricula. Further research is needed to explore this trend across a wide 

range of institutions to confirm the generalizability of these findings and potentially differentiate best 

practices curricularly or pedagogically when working with these groups. Further research can also 

unpack differential relationships with attitudes vs. achievement (e.g., van Es & Weaver, 2018). 

We also need to acknowledge that, even with the numerous variables considered in our anlayses, 

our models only explained approximately 1/3 of the total variation in students’ gains. Although 

observational studies cannot be expected to generate the same level of control over variation as 

controlled experiments, it appears that there are still numerous, likely measurable factors that should be 

included in future studies. Future efforts could include utilizing richer instructor surveys, gathering 

information on student conceputal understanding from throughout the course of the semester, moving 

from self-reported to institutionally-reported student characteristics, and assessing students in a more 

controlled (e.g., monitored computer lab) environment. We do note in our sample a small amount of 

student data was obtained under proctored settings, which did show slightly higher gain scores, 

suggesting that our estimates of achievable gain may be under-estimated overall. 

This does not mean that other changes to pedagogy or the student experience (e.g., class size), 

although not ranking in the top of our list of most important variables, are not worthwhile. For example, 

Posner (2014) suggested thinking carefully about the first day of class and the impact it can have on 
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student attitudes may still be “worth it,” even though the ulimate benefit on students’ understanding 

may be fairly small. 

Another key area of future research is exploring retention after the end of the semester. Notably, 

our work here only looks at student learning gains at the end of the semester. To date, few studies have 

looked beyond that point, though preliminary evidence again suggests SBI may have benefits (Tintle et 

al., 2012). Further work is needed to explore whether and how learning gains from SBI curricula may 

be differentiated in the months and years after the course, and whether the learning gains may be related 

to other modifiable or non-modifiable student, instructor, or institutional characteristics. Little is 

currently known about retention more than four months after the course ends, and how this may be 

impacted by choices in the first statistics course, or student choices about subsequent courses and their 

timing (A second course in statistics? A course in a student’s major that uses statistics?). 

Finally, we acknowledge two limitations of this analysis. First, the sample here were all volunteers: 

instructors opted to participate. Although we have demonstrated the large variability and diversity in 

the sample (institutional, first generation, major, sex, previous experience with statistics, pre-test scores, 

instructor pedagogy, textbook choice, etc.), it is not a true random sample. Second, the instruments used 

here were designed for “traditional” introductory statistics courses and, although still focused on 

conceptual understanding, often fail to capture some of the big, important, and novel ideas that students 

leave SBI courses understanding (e.g., impact of test statistic choice; the overarching process of drawing 

conclusions from data). New instruments (e.g., Ziegler & Garfield, 2018) are needed that fully capture 

all areas of important student learning in modern introductory statistics courses.  

 

6. CONCLUSIONS 

 

Despite continued rapid gains in student enrollments and simultaneous advances in our 

understanding of best practices in statistics education, the vast majority of students do not show very 

large overall gains in conceptual understanding in introductory statistics courses, though they do on 

some individual questions more than others. A bleaker picture is painted when we realize that factors 

like student background and prior mathematical and statistical understanding continue to play a large 

part in what our students take from our introductory statistics courses. Although there are no “magic 

wands,” our analysis provides the strongest evidence yet that, across widely varying student groups, 

instructional experience/pedagogy and institutions, incorporating a simulation-based inference 

curriculum may be an important, impactful, and “easy” aspect of learning and teaching that can be 

addressed for students. Despite this evidence, much additional research is needed, including improved 

assessment instruments that are adapted to emerging conceptual goals related to simulation-based 

inference ideas, better documentation of teaching practices, and controlled experiments to elucidate 

causality and determine best practices more directly. Such research should provide better understanding 

of the potential long-term benefits of SBI and other instructional choices. Furthermore, and very 

importantly, is the need to understand fully whether preliminary evidence of similar or improved 

learning gains from SBI courses in disadvantaged student groups and implied best practices are 

generalizable across institutions.  

 

6.1.  ACKNOWLEDGEMENTS 

 

We thank the National Science Foundation for two grants (DUE-1140629 and DUE-1323210) that 

supported this research and the student researchers who contributed to these analyses. Thank you also 

to the editor, Jennifer Kaplan, and associate editors and reviewers for their feedback and patience. 

 

6.2.  CONFLICT OF INTEREST 

 

Two of the authors of this manuscript (Nathan Tintle and Beth Chance) are also co-authors of the 

ISI curriculum development team. Co-authors were undergraduate Frost Research scholars at California 

Polytechnic State University. 

 

  



17 

REFERENCES 

 

Aliaga, M., Cobb, G., Cuff, C., Garfield, J., Gould, R., Lock, R., Moore, T., Rossman, A., Stephenson, 

B., Utts, J., Velleman, P., & Witmer, J. (2005). Guidelines for Assessment and Instruction in 

Statistics Education College Report. American Statistical Association. 

https://www.amstat.org/docs/default-source/amstat-documents/2005gaisecollege_full.pdf 

Beckman, M., delMas, R., & Garfield, J. (2017). Cognitive transfer outcomes for a simulation-based 

introductory statistics curriculum. Statistics Education Research Journal, 16(2), 419–440. 

https://doi.org/10.52041/serj.v16i2 

Case, C., & Jacobbe, T. (2018). A framework to characterize student difficulties in learning information 

from a simulation-based approach. Statistics Education Research Journal, 17(2), 9–29. 

https://doi.org/10.52041/serj.v17i2 

Chance, B., & McGaughey, K. (2014). Impact of a simulation/randomization-based curriculum on 

student understanding of p-values and confidence intervals. In K. Makar, B. de Sousa, & R. Gould 

(Eds.), Sustainability in Statistics Education. Proceedings of the Ninth International Conference on 

Teaching Statistics (ICOTS-9), Flagstaff, Arizona. International Statistical Institute. 

http://icots.info/icots/9/proceedings/pdfs/ICOTS9_6B1_CHANCE.pdf 

Chance, B., & Rossman, A. (2006). Using simulation to teach and learn statistics. In A. Rossman & B. 

Chance (Eds.), Working Cooperatively in Statistics Education. Proceedings of the Seventh 

International Conference on Teaching Statistics (ICOTS-7), Salvador, Brazil. International 

Statistical Institute. 

www.ime.usp.br/~abe/ICOTS7/Proceedings/PDFs/InvitedPapers/7E1_CHAN.pdf 
Chance, B., Wong, J., & Tintle, N. (2017). Student performance in curricula centered on simulation-

based inference: A preliminary report. Journal of Statistics Education, 24(3), 114–126. 

https://doi.org/10.1080/10691898.2016.1223529 

Cobb, G. W. (1992). Teaching statistics. In L. A. Steen (Ed.), Heeding the call for change: Suggestions 

for curriculum action (pp. 3–43). Mathematical Association of America. 

Cobb, G. (2007). The introductory statistics course: A Ptolemaic curriculum? Technology Innovations 

in Statistics Education, 1(1). https://doi.org/10.5070/T511000028 

Colt, G. C., Davoudi, M., Murgu, S., & Zamanian Rohani, N. (2011). Measuring learning gain during 

a one-day introductory bronchoscopy course. Surgical Endoscopy, 25, 207–216. 

delMas, R., Garfield, J., Ooms, A., & Chance, B. (2007). Assessing students’ conceptual understanding 

after a first course in statistics. Statistics Education Research Journal, 6(2), 28–58. 

https://doi.org/10.52041/serj.v6i2.483 

Diez, D., Barr, C., & Cetinkeya-Rundel, M. (2014). Introductory statistics with randomization and 

simulation. Openintro.org. https://openintro.org/book/isrs/ 

Doerr, H., & English, L. (2003). A modeling perspective on students’ mathematical reasoning about 

data. Journal for Research in Mathematics Education, 34(2), 110–136. 

https://doi.org/10.2307/30034902 

Fry, E. B. (2014). Introductory statistics instructors’ practices and beliefs regarding technology and 

pedagogy. In K. Makar, B. de Sousa, & R. Gould (Eds.), Sustainability in Statistics Education. 

Proceedings of the Ninth International Conference on Teaching Statistics (ICOTS-9), Flagstaff, 

Arizona. International Statistical Institute. 

https://iase-icots/9/proceedings/pdfs/ICOTS9_C202_FRY.pdf?1405041868 

Garfield, J. (1995). How students learn statistics. International Statistical Review, 63(1), 25−34. 

Garfield, J. & Ben-Zvi, D. (2007). How students learn statistics revisited: A current review of research 

on teaching and learning statistics. International Statistical Review, 75(3), 372−396. 

Garfield, J., delMas, R., & Zieffler, A. (2012). Developing statistical modelers and thinkers in an 

introductory, tertiary-level statistics course. ZDM Mathematics Education, 44, 883–898. 

https://doi.org/10.1007/s11858-012-0447-5 

Garfield, J., Hogg, B., Schau, C., & Whittinghill, D. (2002). First courses in statistical science: The 

status of educational reform efforts. Journal of Statistics Education, 10(2). 

http://dx.doi.org/10.1080/10691898.2002.11910665 

Hake, R. R. (1998). Interactive engagement versus traditional methods: A six-thousand student survey 

of mechanics test data for introductory physics courses, American Journal of Physics, 66, 64–74. 

https://doi.org/10.52041/serj.v16i2
https://doi.org/10.52041/serj.v17i2
http://icots.info/icots/9/proceedings/pdfs/ICOTS9_6B1_CHANCE.pdf
file:///C:/Users/bchance/Downloads/www.ime.usp.br/~abe/ICOTS7/Proceedings/PDFs/InvitedPapers/7E1_CHAN.pdf
https://doi.org/10.1080/10691898.2016.1223529
https://doi.org/10.5070/T511000028
https://doi.org/10.52041/serj.v6i2.483
https://iase-icots/9/proceedings/pdfs/ICOTS9_C202_FRY.pdf?1405041868
https://doi.org/10.1007/s11858-012-0447-5
http://dx.doi.org/10.1080/10691898.2002.11910665


18 

Hildreth, L., Robison-Cox, J., & Schmidt, J. (2018). Comparing student success and understanding in 

introductory statistics under consensus and simulation-based curricula. Statistics Education 

Research Journal, 17(1), 103–120. https://doi.org/10.52041/serj.v17i1.178 

Konold, C., Harradine, A., & Kazak, S. (2007). Understanding distributions by modeling them. 

International Journal of Computers for Mathematical Learning, 12, 217−230. 

https://link.springer.com/article/10.1007/s10758-007-9123-1 

Lane-Getaz, S. J. (2007). Toward the development and validation of the reasoning about p-values and 

statistical significance scale. In B. Philips & L. Weldon (Eds.), Proceedings of the ISI/IASE Satellite 

Conference on Assessing Student Learning in Statistics. International Statistical Institute. 

http://www.stat.auckland.ac.nz/~iase/publications/sat07/Lane-Getaz.pdf 

Lane-Getaz, S. J. (2017). Is the p-value really dead? Assessing inference learning outcomes for social 

science students in an introductory statistics course. Statistics Education Research Journal, 16(1), 

357–399. https://doi.org/10.52041/serj.v16i1.235 

Lee, H. S., Doerr, H. M., Tran, D., & Lovett, J. N. (2015). The role of probability in developing learners’ 

models of simulation approaches to inference. Statistics Education Research Journal, 15(2), 216–

238. https://doi.org/10.52041/serj.v15i2.249 

Lock, R., Frazer Lock, P., Lock Morgan, K., Lock, E., & Lock, D. (2013). Statistics: Unlocking the 

power of data (First edition). Wiley.  

Lock, R., Frazer Lock, P. F., Lock Morgan, K., Lock, E., & Lock, D. (2014). Intuitive introduction to 

the important ideas of inference. In K. Makar, B. de Sousa, & R. Gould (Eds.), Sustainability in 

Statistics Education. Proceedings of the Ninth International Conference on Teaching Statistics 

(ICOTS-9), Flagstaff, Arizona. International Statistical Institute. 

http://icots.info/icots/9/proceedings/pdfs/ICOTS9_4A3_LOCK.pdf 

Malone, C., & Hooks, T. (2012, July 31). Finding an appropriate balance between simulation-based 

and traditional methods in the teaching of statistical inference [Paper presentation]. Statistics: 

Growing to Serve a Data-dependent Society, Joint Statistical Meetings, San Diego. 

Maurer, K., & Lock, E. (2015). Bootstrapping in the introductory statistics curriculum. Technology 

Innovations in Statistics Education, 9(1). https://doi.org/10.5070/T591026161 

Moore, D. M. (1997). New pedagogy and new content: The case of statistics. International Statistical 

Review, 65(2), 123–165. 
Parker, N., Fry, E., Garfield, J., & Zieffler, A. (2014). Graduate teaching assistants’ beliefs, practices, 

and preparation for teaching introductory statistics. In K. Makar, B. de Sousa, & R. Gould (Eds.), 

Sustainability in Statistics Education. Proceedings of the Ninth International Conference on 

Teaching Statistics (ICOTS-9), Flagstaff, Arizona. International Statistical Institute.  

https://iase-web.org/icots/9/proceedings/pdfs/ICOTS9_C200_PARKER.pdf?1405041867  

Pfannkuch, M., & Budgett, S. (2014). Constructing inferential concepts through bootstrap and 

randomization-test simulation: A case study. In K. Makar, B. de Sousa, & R. Gould (Eds.), 

Sustainability in Education. Proceedings of the Ninth International Conference on Teaching 

Statistics (ICOTS-9), Flagstaff, Arizona. International Statistical Institute.  

http://iase-web.org/icots/9/proceedings/pdfs/ICOTS9_8J1_PFANNKUCH.pdf  

Posner, M. (2014). A fallacy in student attitudes research: The impact of the first class. In K. Makar, B. 

de Sousa, & R. Gould (Eds.), Sustainability in Education. Proceedings of the Ninth International 

Conference on Teaching Statistics (ICOTS-9), Flagstaff, Arizona. International Statistical Institute.  

http://icots.info/9/proceedings/pdfs/ICOTS9_1F3_POSNER.pdf 

Reaburn, R. (2014). Introductory statistics course tertiary students’ understanding of p-values. Statistics 

Education Research Journal, 13(1), 53–65. https://doi.org/10.52041/serj.v13i1.298 

Roberts, R., Scheaffer, R., & Watkins, A. (1999). Advanced Placement Statistics: Past, present, and 

future. The American Statistician, 53(4), 307–320. 

Roy, S., & Mcdonnel, T. (2018). Assessing simulation-based inference in secondary schools. 

Unpublished manuscript. http://www.isi-stats.com/isi/presentations/ICOTS2018-5.pdf 

Roy, S., Rossman, A., Chance, B., Cobb, G., VanderStoep, J., Tintle, T., & Swanson, T. (2014). Using 

simulation/randomization to introduce p-value in Week 1. In K. Makar, B. de Sousa, & R. Gould 

(Eds.), Sustainability in Education. Proceedings of the Ninth International Conference on Teaching 

Statistics (ICOTS-9), Flagstaff, Arizona. International Statistical Institute. 

https://icots.info/9/proceedings/pdfs/ICOTS9_4A2_ROY.pdf 

https://doi.org/10.52041/serj.v17i1.178
http://www.stat.auckland.ac.nz/~iase/publications/sat07/Lane-Getaz.pdf
https://doi.org/10.52041/serj.v16i1
https://doi.org/10.52041/serj.v15i2
https://doi.org/10.5070/T591026161
http://iase-web.org/icots/9/proceedings/pdfs/ICOTS9_8J1_PFANNKUCH.pdf
http://icots.info/9/proceedings/pdfs/ICOTS9_1F3_POSNER.pdf
https://doi.org/10.52041/serj.v13i1.298
http://www.isi-stats.com/isi/presentations/ICOTS2018-5.pdf
https://icots.info/9/proceedings/pdfs/ICOTS9_4A2_ROY.pdf


19 

Saldanha, L. A., & Thompson, P. W. (2002). Conceptions of sample and their relationship to statistical 

inference. Educational Studies in Mathematics, 51, 257–270.  

Schau, C. (2003). Survey of Attitudes Toward Statistics (SATS-36). http://evaluationandstatistics.com/ 

Tabor, J., & Franklin, C. (2013). Statistical reasoning in sports. W.H. Freeman and Company. 

Tintle, N. L., Chance, B., Cobb, G., Rossman, A., Roy, S., Swanson, T., & VanderStoep, J. (2015). 

Introduction to statistical investigations I (First edition). Wiley  

Tintle, N., Clark, J., Fischer, K., Chance, B., Cobb, G., Roy, S., Swanson, T., & VanderStoep, J. (2018). 

Assessing the association between pre-course metrics of student preparation and student 

performance in introductory statistics: Results from early data on simulation-based inference vs. 

nonsimulation based inference. Journal of Statistics Education, 26(2), 103−109. 

https://www.tandfonline.com/doi/full/10.1080/10691898.2018.1473061 

Tintle, N., Topliff, K., VanderStoep, J., Homes, V.-L., & Swanson, T. (2012). Retention of statistical 

concepts in a preliminary randomization-based introductory statistics curriculum, Statistics 

Education Research Journal, 11(1), 21–40. https://doi.org/10.52041/serj.v11i1.340 

Tintle, N., VanderStoep, J., Holmes, V-L., Quisenberry, B., & Swanson, T. (2011). Development and 

assessment of a preliminary randomization-based introductory statistics curriculum, Journal of 

Statistics Education, 19(1). https://doi.org/10.1080/10691898.2011.11889599 

Tobias-Lara, M. G., & Gomez-Blancarte, A. L. (2019). Assessment of informal and formal inferential 

reasoning: A critical research review. Statistics Education Research Journal, 18(1), 8–25. 

https://doi.org/10.52041/serj.v18i1.147 

van Es, C., & Weaver, M. (2018). Race, sex, and their influences on introductory statistics education. 

Journal of Statistics Education, 26(1), 48–54. 

https://www.tandfonline.com/doi/full/10.1080/10691898.2018.1434426 

Wild, C. J., Pfannkuch, M., Regan, M., & Horton, N. J. (2011). Towards more accessible conceptions 

of statistical inference. Journal of the Royal Statistical Society: Series A (Statistics in Society), 

174(2), 247−295. https://doi.org/10.1111/j.1467-985X.2010.00678.x 

Zieffler, A., & Catalysts for Change. (2015). Statistical thinking: A simulation approach to modeling 

uncertainty (3rd ed.). Catalyst Press. 

Zieffler, A., Garfield, J., Alt, S., Dupuis, D., Holleque, K., & Chang, B. (2008). What does research 

suggest about the teaching and learning of introductory statistics at the college level? A review of 

the literature. Journal of Statistics Education, 16(2). 

http://dx.doi.org/10.1080/10691898.2008.11889566 

Zieffler, A., Park, J., Garfield, J. delMas, R., & Bjornsdottier, A. (2012). The Statistics Teaching 

Inventory: A survey on statistics teachers’ classroom practices and beliefs. Journal of Statistics 

Education, 20(1). https://doi.org/10.1080/10691898.2012.11889632 

Ziegler, L., & Garfield, J. (2018). Developing a statistical literacy assessment for the modern 

introductory statistics course. Statistics Education Research Journal, 17(2), 161–178. 

https://doi.org/10.52041/serj.v17i2.164 

 

 

BETH CHANCE 

California Polytechnic State University 

Department of Statistics 

1 Grand Ave. 

San Luis Obispo, CA 93407 

  

https://www.tandfonline.com/doi/full/10.1080/10691898.2018.1473061
https://doi.org/10.52041/serj.v11i1.340
https://doi.org/10.1080/10691898.2011.11889599
https://www.tandfonline.com/doi/full/10.1080/10691898.2018.1434426
https://doi.org/10.1111/j.1467-985X.2010.00678.x
http://dx.doi.org/10.1080/10691898.2008.11889566
https://doi.org/10.1080/10691898.2012.11889632
https://doi.org/10.52041/serj.v17i2.164


20 

APPENDIX 

 

Table A.1. Mapping of concept inventory questions to most similar CAOS questions 

 
# Description CAOS Modifications  

16 Identify relevant considerations in generalizing  38 Changed single forced choice 

check all that apply 

22 Can we draw causal conclusion? 24 Changed context 

25 Association vs. causation 22 Minor changes to answer 

choices 

42 Primary purpose of random assignment in study design 7 Reduced number of answer 

choices 

Descriptive statistics 
 

  

17 Identify which graph best represents distribution  6 Changed context 

21 Comparing two distributions 11–13 Merged into one question 

32 Matching graph to variable description 5 Minor changes to wording 

33 Matching graph to variable description 3 Minor changes to wording 

36 Comparison of conditional proportions 36  

40 Which histogram has the least variability/SD 14 Minor changes to wording 

41 Which histogram has the greatest variability/SD 15 Minor changes to wording 

Simulation/Sampling variability 
 

  

34 Larger sample sizes give less variable statistics 16 Changed context, wording 

35 Which graph of statistics is most plausible 17 Gave dot plots rather than 

numbers 

37 Valid/invalid design of simulation (repeat the study) 37 Single forced choice to 3 

valid/invalid statements 

38 Valid/invalid design of simulation (correct) 37  

39 Valid/invalid design of simulation (repeat the study) 37  

Tests of significance 
  

  

23 Could small sample size explain insignificance 23 Changed to valid/invalid 

statement 

24 Is insignificant difference evidence in favor of null New Variation of CAOS 24 

27 Is researcher hoping for small p-value or large p-value 19  

28 Valid/Invalid interpretation of p-value (probability null) 26 Lengthened statement in 

context 

29 Valid/Invalid interpretation of p-value (valid) 25  

30 Valid/Invalid interpretation of p-value (probability alt) 27 Lengthened statement in 

context 

31 Valid/Invalid interpretation of p-value (statistic)  New  

43 Inferential reasoning New  

44 Impact of sample size on informal inference  New  

47 Which pair of dot plots have strongest evidence  New  

Confidence intervals 
 

  

18 Interpretation of confidence interval (individual) 28 Modified wording 

19 Interpretation of confidence interval (valid) 31 Modified wording 

20 Interpretation of confidence interval (statistic) 30 Modified wording 

26 Sample size necessary for MOE for US population  New  

45 Duality between interval and conclusion New  

46a Impact of sample size on confidence interval width New  

46b Impact of confidence level on interval width  New  

 

CAOS questions not used 

Q1: Pick best verbal narrative of descriptive output 

Q2: Matching boxplot to histogram 

Q4: One matching of histogram to variable description 

Q8-10: Interpreting boxplots (used within curriculum) 

Q18: Informal inference comparing two lists of 

outcomes 

Q20: Interpretation of scatterplot (historically large 

pre-test percentage correct) 

Q21: Impact of influential observation on judgement of 

linearity 

Q29: Incorrect interpretation of confidence interval for 

95% of observations 

Q32: Recognize need for use of standard error vs. 

standard deviation 

Q33: Match histogram to descriptive statistics 

Q34-35: Match graph to sample/sampling distribution 

Q39: Recognizing inappropriate extrapolation from 

regression line 

Q40: Recognize possibility of Type I error 
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Table A.2. Modifications to questions after Year 1 

 

Item Modification/Impact 

16 We formed one question from three valid/invalid questions to a single “check all that apply” 

question across four statements. Scores were scaled each year as the fraction of correct responses 

out of the 3 or 4 prompts. This change did impact the scores, lowering the percentage correct by 10-

15 percentage points (pre and post).  

 

42 For this question about the purpose of random assignment (generalization, causation, equal sample 

sizes), the last option was changed to “both a and b,” making it much more attractive and lowering 

the overall percentage correct by roughly 20 percentage points (pre and post).   

 

47 This question asks which pairs of dot plots showed stronger evidence of a treatment effect (#47). 

One graph option was changed so the correct answer required consideration of the within group 

variation in addition to the between group variation. This changed lowered scores by about 30 

percentage points.  

 

40, 41 For two questions judging least/greatest variation from histograms, the text “as measured by the 

standard deviation” was added, but this did not strongly impact scores. 

 

24 The wording on this question, asking whether a large p-value provides evidence of X does not cause 

Y, was changed to whether a large p-value provides evidence that X does not impact Y, leading to 

a roughly 10 percentage point increase between the years (but not this is a question that saw a 

decrease in performance pre to post each year). Curiously, performance on Question 25 was 

noticeably lower in Year 1 (recognizing whether a causal conclusion could be drawn from an 

observational study), even though no change was made to the question. 
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Table A.3. Summary of concept inventory 

 

     ISI Other SBI NonSBI 

# Description Pre Post Gain A 

Gain 

Pre Post Gain A 

Gain 

Pre Post Gain A 

Gain 

Data collection/Scope of conclusions 
      

16 Identify relevant considerations in generalizing from 

sample  

0.58 0.68 0.10 0.25 0.62 0.70 0.08 0.22 0.59 0.65 0.06 0.15 

22 Comparing two dot plots, can we draw causal 

conclusion? 

0.71 0.85 0.14 0.49 0.73 0.87 0.14 0.52 0.72 0.79 0.07 0.25 

25 Association vs. causation 0.57 0.58 0.01 0.02 0.55 0.61 0.06 0.13 0.57 0.51 -0.06 -0.13 

42 Primary purpose of random assignment in study design 0.28 0.38 0.10 0.14 0.28 0.36 0.08 0.11 0.28 0.25 -0.03 -0.04 

Descriptive statistics 
       

17 Identify which graph best represents distribution  0.25 0.22 -0.03 -0.04 0.26 0.22 -0.04 -0.04 0.21 0.21 0.00 0.00 

21 Comparing two distributions 0.77 0.90 0.13 0.56 0.76 0.89 0.13 0.53 0.76 0.82 0.06 0.26 

32 Set3: Matching graph to variable description 0.47 0.51 0.04 0.08 0.51 0.52 0.01 0.02 0.48 0.57 0.09 0.17 

33 Set3: Matching graph to variable description 0.80 0.85 0.05 0.25 0.82 0.86 0.04 0.23 0.81 0.84 0.03 0.14 

36 Comparison of conditional proportions 0.45 0.59 0.14 0.25 0.46 0.59 0.13 0.23 0.46 0.54 0.08 0.14 

40 Set5: Which histogram has the least variability 0.36 0.42 0.06 0.10 0.39 0.48 0.09 0.15 0.36 0.41 0.05 0.09 

41 Set5: Which histogram has the greatest variability 0.29 0.33 0.04 0.05 0.26 0.29 0.03 0.04 0.26 0.30 0.04 0.05 

Simulation/Sampling variability 
       

34 Larger sample sizes give less variable statistics 0.26 0.32 0.06 0.08 0.29 0.36 0.07 0.10 0.25 0.28 0.03 0.03 

35 Which graph of statistics is most plausible 0.49 0.54 0.05 0.09 0.49 0.51 0.02 0.04 0.47 0.50 0.03 0.05 

37 Set4: Valid/invalid design of simulation (repeat the 

study) 

0.40 0.43 0.03 0.05 0.4 0.48 0.08 0.14 0.41 0.39 -0.02 -0.03 

38 Set4: Valid/invalid design of simulation (correct) 0.59 0.89 0.30 0.72 0.61 0.82 0.21 0.54 0.52 0.61 0.09 0.18 

39 Set4: Valid/invalid design of simulation (repeat the 

study) 

0.31 0.43 0.12 0.17 0.31 0.38 0.07 0.10 0.30 0.31 0.01 0.02 

Tests of significance 
          

23 Could small sample size explain insignificant 

difference 

0.86 0.77 -0.09 -0.77 0.86 0.77 -0.09 -0.64 0.86 0.76 -0.10 -0.69 

24 Is insignificant difference evidence in favor of null 0.78 0.65 -0.13 -0.58 0.75 0.61 -0.14 -0.60 0.8 0.66 -0.14 -0.65 

27 Is researcher hoping for small p-value or large p-value 0.45 0.90 0.45 0.82 0.46 0.88 0.42 0.78 0.42 0.76 0.34 0.60 

28 Set2: Valid/Invalid interpretation of p-value 

(probability null) 

0.57 0.83 0.26 0.59 0.58 0.79 0.21 0.51 0.56 0.74 0.18 0.42 

29 Set2: Valid/Invalid interpretation of p-value (valid) 0.45 0.68 0.23 0.42 0.46 0.59 0.13 0.24 0.44 0.50 0.06 0.12 

30 Set2: Valid/Invalid interpretation of p-value 

(probability alt) 

0.60 0.70 0.10 0.25 0.61 0.66 0.05 0.14 0.61 0.63 0.02 0.03 

31 Set2: Valid/Invalid interpretation of p-value (statistic)  0.54 0.79 0.25 0.54 0.57 0.77 0.2 0.46 0.52 0.73 0.21 0.43 

43 Inferential reasoning  0.40 0.62 0.22 0.36 0.43 0.58 0.15 0.26 0.38 0.42 0.04 0.06 
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44 Impact of sample size on informal inference  0.52 0.64 0.12 0.24 0.54 0.57 0.03 0.05 0.50 0.55 0.05 0.10 

47 Which pair of dot plots have strongest evidence  0.44 0.48 0.04 0.06 0.45 0.51 0.06 0.12 0.42 0.45 0.03 0.05 

Confidence intervals 
       

18 Set1: Interpretation of confidence interval (prediction) 0.24 0.32 0.08 0.11 0.23 0.39 0.16 0.21 0.23 0.32 0.09 0.12 

19 Set1: Interpretation of confidence interval (valid) 0.60 0.60 0.00 0.00 0.61 0.68 0.07 0.20 0.61 0.66 0.05 0.14 

20 Set1: Interpretation of confidence interval (statistic) 0.24 0.37 0.13 0.18 0.23 0.39 0.16 0.21 0.25 0.38 0.13 0.17 

26 Sample size necessary for MOE for US population  0.13 0.21 0.08 0.10 0.13 0.25 0.12 0.14 0.15 0.27 0.12 0.14 

45 Duality between interval and conclusion 0.22 0.29 0.07 0.10 0.22 0.27 0.05 0.07 0.23 0.25 0.02 0.04 

46a Impact of sample size on confidence interval width 0.71 0.80 0.09 0.31 0.70 0.79 0.09 0.29 0.70 0.76 0.06 0.20 

46b Impact of confidence level on confidence interval width  0.32 0.60 0.28 0.41 0.30 0.57 0.27 0.38 0.32 0.57 0.25 0.36 
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Table A.4. Section/Institution characteristics (Percentages) 

 Year 1 Year 2 Year 3 

Prerequisite    

  None 17 20 15 

  HS algebra 47 35 37 

  College algebra 29 34 37 

  Pre-calculus 0 2 1 

  Other (e.g., Math 101 or placement exam) 7 10 9 

Type of department    

  Statistics 29 32 30 

  Mathematics 63 61 60 

  Other 9 7 12 

Carnegie classification    

  Two-year college 14 16 14 

  Bachelor’s 46 32 30 

  Master’s 20 25 33 

  Doctoral university 20 27 23 

Student type    

  Lower division GE --- 26 53 

  Lower division required --- 53 27 

  Upper division GE/required --- 14/6 18/2 

   Note: The Student type question was not asked in Year 1. 
 

Propensity Score Weighting 

The ‘cbps’ package in R was used to create more equivalent groups between the instructors choosing 

SBI-focused and those not choosing SBI-focused textbooks. Instructors were matched based on GAISE 

familiarity (complete/mostly vs. some/no/unsure), Carnegie classification, instructor sex, whether the 

instructor had taken additional statistics courses, and the instructor-level averages for pre-concept score 

(quadratic) and overall student attitudes score coming into the course. After removing instructors with 

incomplete observations on these variables, we achieved covariate balance as illustrated in Figure A.1. 

 

 
Figure A.1. Covariate balance from propensity score weighting on instructor-level variables 

 

A model estimating the textbook effect on achievable gain, while still including adjustments for pre-

affect and Carnegie classification illustrated an impact of 3.79 percentage points, in line with estimates in 

the primary multilevel analyses.  

Term Coefficient p-value 

Textbook (NonSBI) -3.79 < .00001 

Affect at baseline 1.96 .04 

Carnegie classification – 2YC -3.00 .008 

Carnegie classification – Masters -2.68 < .00001 

Carnegie classification- PhD -2.61 .003 

 


