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ABSTRACT

In this report, we analyze students’ learning of compound probability by describing connections they
generated while engaged with tasks involving two independent events. Several of their connections were
compatible with the development of expertise, such as recognizing the need to determine sample spaces
across a variety of situations and noting structural similarities among tasks, even when their task
solutions were incomplete from a normative standpoint. Students reasoned about dimensions of context,
variation, mathematical structure, sample space, and probability quantification. We describe the extent
to which they coordinated these dimensions. We also describe teaching moves, such as posing idealized
situations and shifting to structurally similar tasks, that prompted students to attend to multiple relevant
task dimensions.

Keywords: Statistics education research; Compound probability; Connections; Qualitative
research

1. INTRODUCTION

The ability to see connections among tasks in a given domain is commonly considered a hallmark
of expertise (Kimball & Holyoak, 2000). For example, suppose a student has learned to solve the
problem shown in Figure 1, which involves flipping two coins. Also suppose the student is later given
the assessment item shown in Figure 2, which is analogous but involves two spinners instead of two
coins (Zawojewski & Shaughnessy, 2000). A student who solves the two-spinner task using knowledge
related to the two-coin task exhibits a degree of transfer, in the traditional sense of the word (Bransford
& Schwartz, 1999; Chow & Van Haneghan, 2016), by recognizing that ideas used to solve the first task
are also pertinent to the second one.

Two fair coins are part of a carnival game. A player wins a prize only when both coins come

up heads after each coin has been flipped once.

James thinks he has a 50-50 chance of winning. Do you agree? Justify your answer.

Figure 1. Two-coin task involving compound probability and fairness.
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The two fair spinners shown above are part of a carnival game. A player wins a prize only
when both arrows land on black after each spinner has been spun once.
James thinks he has a 50-50 chance of winning. Do you agree? Justify your answer.

NAEP Question 1D: 1996-12M12 #3 M070501

Figure 2. Two-spinner task to assess knowledge of compound probability and fairness (Item source:
U.S. Department of Education, Institute of Education Sciences, National Center for Education
Statistics, NAEP, 1996 Mathematics Assessment).

From a teaching and learning standpoint, it is important to note that a student who does not yet
recognize all the structural similarities between the tasks shown in Figures 1 and 2 may nonetheless
bring some smaller, yet important, connections to bear in approaching both. For instance, a student
might recognize the general principle that there is a need to determine the sample space in each task
even if they are not able to determine sample spaces precisely. There is value in recognizing when
students make such incremental connections because they reveal smaller changes in learning that can
be leveraged to help students develop expertise (Pratt, 2000; Wagner, 2010). In the present study, we
examine students’ generation of such connections in the domain of compound probability. The specific
research questions we address are: (i) What connections does a small group of students generate when
reasoning about compound probability tasks involving two independent events? and (ii) Under what
instructional circumstances do these connections emerge? In posing these research questions, we sought
to construct a detailed localized theory of teaching and learning from an in-depth qualitative
examination of a single case.

2. THEORETICAL PERSPECTIVE

Many traditional studies of transfer rely upon students’ responses to paired tasks such as those
shown in Figures 1 and 2 to assess connections students make across situations (Wagner, 2010).
Although there is value in such an approach, investigating only students’ final responses to such tasks
leaves aspects of their thinking unexplored. For example, students who are not completely successful
solving both tasks might still recognize the need to examine the mathematical structures of each
situation or to determine the sample spaces in each case. Such small-scale connections can remain
hidden unless a suitable theoretical lens is brought to bear.

We used an actor-oriented transfer (AOT) perspective to study small and large scale connections
students generated when solving compound probability tasks. Lobato and Siebert (2002) wrote, “Actor-
oriented transfer is defined as the personal construction of relations of similarity between activities, or
how ‘actors’ see situations as similar” (p. 89). From this perspective, student-generated connections are
central objects of study (Lockwood, 2011). Connection building can be conceived of as “the expansion
of instructional or everyday experiences beyond the conditions of initial learning” (Lobato, 2012, p.
232) and requires studying “the influence of a learner’s prior activities on her activity in novel
situations” (Lobato, 2012, p. 233). Hence, to detect student-constructed connections, we attended to
students’ discourse as they engaged with tasks selected to introduce new contexts and mathematical
structures in a gradual, incremental manner.

The AOT perspective emphasizes examining similarities individuals (or “actors”) see among
situations rather than just assessing whether they see similarities apparent to experts, because many
transfer situations “include a dimension of complexity that is hidden from the view of an expert until



one investigates students’ understanding of the transfer situations more closely” (Lobato, 2012, p. 241).
AOT entails examining the connections learners generate among instructional tasks rather than just
whether or not they have attained expertise (Lockwood, 2011). Assessing whether learners have
attained expertise, as in many traditional studies of transfer, is still an important goal; the AOT
perspective provides a complementary portrait of smaller connections generated along the way (Lobato,
2012).

The AOT perspective entails a fundamental metaphor of transfer as construction rather than
application of knowledge (Lobato & Siebert, 2002). In an AOT framework, “one assumes that learners
are making connections between situations nearly all the time, guided by aspects of the situation that
they find personally salient” (Lobato, 2003, p. 19). It is axiomatic that individuals do not all come to
see similarities between situations in the same way (Wagner, 2010). These differences among learners’
pathways make it problematic to assume that knowledge of one task is simply applied to another
(Lockwood, 2011). Hence, AOT studies aim “to understand the interpretative nature of the connections
that people construct between learning and transfer situations, as well as the socially situated processes
that give rise to those connections” (Lobato, 2012, p. 239).

3. STUDENT-GENERATED CONNECTIONS IN LITERATURE ABOUT LEARNING
COMPOUND PROBABILITY

In the present study, we sought to understand the nature of student-generated connections and
aspects of the classroom environment that would foster active making of connections. As we began to
design an instructional environment, we searched the literature to anticipate the reasoning patterns
students exhibit (Stein et al., 2008) when trying to construct connections across compound probability
tasks. We were particularly interested in helping students construct connections that would help them
reason about compound probability tasks involving two independent events that can be modeled
concretely. Our attention was drawn to this type of task because of the difficulties it has caused students.
When the spinner task shown in Figure 2 was posed to a large, representative sample, only 8% of
students in their final year of compulsory schooling were able to provide a correct response and
justification; approximately half simply agreed that there was a 50-50 chance of winning (Shaughnessy,
2007). In the present study, we sought to better understand reasons that may underlie this type of
performance and to develop strategies to help students move toward expertise on this type of task. In
this section, we summarize some existing literature that helped us anticipate some of the reasoning
students might exhibit during instruction focused on helping them learn to solve tasks like those shown
in Figures 1 and 2.

Given our AOT theoretical perspective, we sought to anticipate both normative and non-normative
student-generated connections (Lockwood, 2011). We use the word ‘“normative” to describe
disciplinary thinking commonly accepted among experts (Shaughnessy 2007). We found three salient
themes in the literature about teaching and learning with two-stage tasks like those shown in Figure 1
and 2 that helped us anticipate students’ normative and non-normative connections: (i) students may
approach compound probability problems with strategies appropriate for simple probability problems,
(ii) attending to order when relevant to determining sample space is a complex cognitive process, and
(iii) students may use visual models to solve compound probability problems when prompted but not
employ them otherwise.

One prevalent theme in research is that students often appear to approach compound probability
situations as simple probability ones (lversen & Nilsson, 2019; Lysoe, 2008). For example,
Shaughnessy and Ciancetta (2002) had students work with a single spinner in one task and later with
two spinners, as shown in Figure 2. In the two-spinner task, students were to decide if there was a 50-
50 chance of both landing on black. Most students looked at the total amount of black area across the
two spinners, saw it was 50%, and decided there was a 50-50 chance of both landing on black. Watson
and Kelly (2004) reported similar findings. lversen and Nilsson (2019) interpreted such findings to
indicate that students dealt with the compound probability situation “by applying methods working in
a simple stochastic environment” (p. 3). This student strategy is prevalent and well-documented in the
literature (Fischbein & Snarch, 1997; Pratt, 2000).

One might characterize students’ non-normative approaches to the two-spinner task as indicative of
over-generalization and negative transfer (Chen & Daehler, 1989). From another perspective, one might



acknowledge that students have not developed expertise for this type of problem; yet, one might also
recognize that students have constructed the generalization of needing to account for area in some
manner when determining probability in such cases. Recognizing such a student-generated connection
is useful from a teaching perspective because it brings to light a cognitive asset to leverage as teachers
design sequences of activities to help students continue to work toward expertise.

In many compound probability tasks with two independent events, the sample space can be
represented as a collection of ordered pairs. For example, the set of outcomes for tossing two fair six-
sided dice consists of 36 ordered pairs. Learning to account for order in such situations is non-trivial
for students (Alston & Maher, 2003; English & Watson, 2016; Iversen & Nilsson, 2019). Vidakovic et
al. (1998) noted that some students considered the outcomes (5, 4) and (4, 5) to be the same because in
each case the sum is 9. One could hypothesize that such thinking occurred, in part, because students
used the commutative property of addition in a situation where it was not applicable (Alston & Maher,
2003). One might characterize this as another instance of negative transfer, because a generalization
useful for a variety of situations (in this case, the commutative property) was applied in an unintended,
perhaps unanticipated, way to a new situation.

From another perspective, characterizations of student thinking about the two-dice situation other
than negative transfer might be made. Although the students did not count outcomes as intended, they
did recognize the need to systematically count them. Arguably, students who know when to attempt to
count outcomes are further along the path to expertise than those who rely solely on carrying out game
trials or non-mathematical considerations in determining probabilities of outcomes. Students may also
have constructed an internally coherent generalization for what it means for outcomes to be the “same”
(i.e., yielding the same sum) even though it differs from how the word might be used in normative
discourse.

Visual representations such as tree diagrams (Konold, 1996) and area models (Ron et al., 2017) are
frequently used to help students count outcomes and map two-dimensional sample spaces. Ron et al.
found that students successfully used visual models when they were included in task statements but had
less success when no such prompts were included. Others have documented a similar phenomenon
(Iversen & Nilsson, 2019). One might characterize this phenomenon as indicating no transfer of
learning; from another perspective, however, underlying reasons for it are of interest. Deeper analyses
can reveal similarities and differences students see among task characteristics and explain why they
believe certain tools to be relevant to one situation but not another. Such insights can then be used to
design subsequent instruction. Situating research in classroom contexts can allow researchers to gain
such insights about students’ thinking along with how and when students generate normative and non-
normative connections during instruction.

English and Watson (2016) mapped a research-based pathway that can be used to design instruction
that fosters children’s learning of compound probability. The pathway included phases of doing
concrete experimentation to produce data related to a probability situation, organizing and representing
the data produced, and interpreting the results in relation to the given task (Batanero et al., 2005). They
used the pathway to support and study children’s learning during a task that involved flipping one coin
and a subsequent task that involved flipping two. Children’s initial expectations, expressed as
predictions about the outcomes of each coin task, were elicited at the start of instruction. These
predictions were revisited as students gathered, represented, and analyzed more and more data from
coin-flipping trials. These activities were used as a basis for helping students relate observed relative
frequencies to theoretical probabilities. As they progressed from experimental relative frequencies to
theoretical probabilities in this manner, students were prompted to reflect on connections among their
intuitions, expectations, relative frequencies, and observed random variation. Through the process,
English and Watson found that students “developed a deeper understanding of the relationship between
relative frequency of outcomes and theoretical probability as well as their respective associations with
variation and expectation” (p. 28). Hence, having students make predictions about outcomes of
compound probability tasks, test and refine the predictions by gathering and analyzing data, and then
link the results to formal theoretical probabilities has the potential to enhance student learning.



4. METHOD
4.1. DESIGN-BASED RESEARCH PERSPECTIVE

In the present study, we investigated students’ generation of connections related to compound
probability in a classroom context. We worked from a design-based research perspective, which
emphasizes attending carefully to students’ reasoning patterns during instruction in order to make
ongoing conjectures about how to design and sequence learning experiences for them (Bakker & van
Eerde, 2015; Cobb et al., 2017). This perspective resonates with the goal of creating a learning
environment to support students in gradually making connections that are useful across a variety of
similar contexts involving compound probabilities. In the present study, gathering qualitative classroom
data from such an environment allowed us to detect several connections students generated over the
course of instruction as we made teaching adjustments intended to optimize students’ learning.

In design-based research, an overarching hypothetical learning trajectory is designed at the outset
and then revised in response to classroom data as the study is carried out. Hence, at the outset of the
study, we constructed a macro-level sequence to outline a beginning hypothetical learning trajectory
that was gradually revised as a result of micro-level sequences taking shape in response to observed
student thinking. In this report, we use “macro level” to describe a sequence of instructional scenarios
that progressively build upon one another over multiple lessons and “micro level” to refer to sequences
of learning experiences within one given instructional scenario.

4.2. PARTICIPANTS

We studied a small group of students in anticipation of time-intensive, detailed qualitative analyses
of reasoning over multiple lessons and interviews. Four children, two boys and two girls, participated
in the study: Tom, Laura, Aiden, and Emilia (pseudonyms). Three of them were students of color: Tom
and Laura were Asian, Emilia was Hispanic, and Aiden was Caucasian. The four participants formed a
self-contained group and were the only children in the classroom for the study. The parents of all four
participants had submitted applications for their children to participate in summer mathematics
instruction at the authors’ home campus. Other children brought to campus for summer mathematics
instruction formed their own self-contained groups, focusing on different, non-probability related
subject matter at various grade levels in different classrooms with different instructors.

Groups for summer mathematics instruction were formed with the intent of balancing the numbers
of boys and girls, having students from different school settings, and having a diverse range of learning
needs represented. To attain diversity along these dimensions, we had all parents applying for the
program complete a questionnaire about student characteristics and needs. Questionnaire responses
indicated that all participants were preparing to enter seventh grade at their respective schools. Tom
was 12 years old at the time of the study and attended a public school. Laura was also 12 years old; she
attended a different public school. Aiden turned from 11 to 12 years old midway through the study. He
was homeschooled by his parents. Emilia was 12 years old and attended a private school. Regarding
student characteristics and learning needs, Aiden’s parents reported that he had been diagnosed with
dysgraphia but also had strong skills in mental mathematics. The other parents did not identify specific
learning disabilities or strengths, but they all did express goals for the program. Emilia’s mother wrote
that she hoped the program would help Emilia develop a more positive attitude toward mathematics.
Laura’s mother wrote that she would like to see Laura’s problem-solving skills develop. Tom’s mother
wanted him to be introduced to “other fun ways for math.”

4.3. PROCEDURE

Participants’ parents agreed to bring them to nine consecutive weekly sessions. The first session
was used for 30-minute individual pre-interviews, the next seven sessions were one-hour lessons
involving the entire participant group, and the final session was used for 30-minute individual post-
interviews. Parents received a $20 stipend for each session their child attended and a $50 bonus for
perfect attendance. All participants attended all sessions except Emilia, who missed one lesson. All



sessions were video recorded and transcribed, and students’ written work was retained for analysis.
Next, we describe the interviews and lessons in detail.

At the start of each pre- and post-interview, students were given the task shown in Figure 3 so we
could obtain baseline information about their knowledge of simple probability. The compound
probability tasks shown in Figures 1 and 2 were then administered. We hypothesized that participants
would not initially exhibit expertise on the interview tasks because their school curriculum (Common
Core State Standards Initiative, 2010) would not include probability until the fall semester immediately
following the summer sessions. The two-spinner task (Figure 2) was selected to create continuity with
previous studies (e.g., Shaughnessy & Ciancetta, 2002; Watson & Kelly, 2004). The two-coin task
(Figure 1) was designed to be analogous to the two-spinner task. We were interested in comparing
students’ approaches to the tasks before and after instruction in order to investigate the extent to which
they might make connections between the two.

Imagine you are playing a coin-tossing game against a friend. You take turns tossing a coin. If
it is heads, you win a point. If it is tails, your friend wins a point. The person with the most
points at the end of the game wins. Each person gets the same number of turns. Is this a fair

game? Why or why not?

Figure 3. Task administered at the start of each pre- and post-interview.

During pre-interviews, we gave each participant the two-coin task (Figure 1) before the two-spinner
task (Figure 2). During post-interviews, we changed the order of the two tasks because we had students
work with situations similar to the two-coin task during instruction, but we intentionally avoided
introducing spinners. We placed the two-spinner task first during post-interviews to avoid implicitly
suggesting that strategies they had learned for the two-coin task should be used on the two-spinner task.
After posing each task, we asked follow-up probing questions about students’ strategies (Moyer &
Milewicz, 2002) to learn as much as possible about their thinking. Some of the follow-ups were general
“how” and “why” probes, and others were specific questions about strategies students used
(contextualized examples of both types of probes are provided in section 5.1 of this article). Students’
responses were captured on video, and the written work they produced was also retained for analysis.

Our first step in planning for instruction was to form an a priori hypothetical learning trajectory to
construct a macro-level sequence of instructional scenarios. We aimed to help students compare similar
scenarios that became progressively more complex in order to facilitate structural reasoning and
connection generation (Barnett & Ceci, 2002). In accord with English and Watson (2016), we initially
decided to have students make predictions about outcomes of probability tasks we posed, gather data
to test and refine the predictions, and then use these experiences as a basis for learning about formal
theoretical probabilities. We conjectured that these activities would put students in position to describe
sample spaces for compound probability situations using organized lists and tree diagrams. These
sample space representations could then be used to determine theoretical probabilities for outcomes of
interest.

All lessons were planned collaboratively by the three authors of this article. The second and third
authors taught each lesson while the first author observed. Lessons involved a combination of individual
work, pair work, and whole-group work, with whole-group work being the predominant mode of
instruction. During whole-group discourse, students were encouraged to share their ideas, think aloud
with others, and assess one another’s reasoning, because such exploratory talk also promotes transfer
and making connections (Webb et al., 2017). Being able to hear and record students’ exploratory talk
also helped us attain our design-based research goals of constructing a localized theory of student
learning and making incremental changes to the learning trajectory in response to the connections
students verbalized. Our initial macro-level hypotheses were revised as we gathered and analyzed
micro-level student data from each lesson. The instructional decisions made at the micro level and how
they were influenced by our interpretations data are described in the results section of this report. A



macro-level view of the four instructional scenarios that gradually took shape as a result of our ongoing
analyses appears in Figure 4. Key similarities and differences among the scenarios are also summarized
in Figure 4.
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Figure 4. A macro-level chronological view of the four instructional scenarios for the study and their
key similarities and differences in context, data generation processes, and mathematical structure.

Each instructional scenario shown in Figure 4 spanned 1-3 lessons. The scenarios were designed to
be similar to one another yet gradually introduced new contexts, data generation mechanisms, and
mathematical structures as students’ reasoning suggested they would benefit from such shifts. In the
first scenario (Lessons 1-3), students drew cubes from a bag containing five blue and five red. Early in
the scenario, they drew one cube with replacement to study simple probability. Later in the scenario,
they drew one cube from the bag, replaced it, drew another, replaced it, and recorded how many blues
were obtained in each pair they drew. In the second scenario (Lessons 4-5), they flipped a quarter and
a penny simultaneously. Students drew pictures of possible outcomes and conducted trials to generate
data. They then moved to a third scenario (Lesson 6), which dealt with flipping two quarters
simultaneously. Students produced organized lists to account for all possible outcomes. Structural
similarities of the sample spaces for key tasks related to these three initial scenarios are included in the
“D4” portion of Figure 15 later in this report. The fourth scenario (Lesson 7) involved generating data
by playing “Rock, Paper, Scissors” (Nelson & Williams, 2008) and using and interpreting organized
lists and tree diagrams representing the outcomes. The fourth scenario entailed a slight shift in
underlying mathematical structure with an increase in the number of elements in the sample space as
compared to the first three scenarios. We explain our design and sequencing decisions in more detail
throughout the results section of this report to describe how our instructional decisions were responsive
to the thinking students exhibited during specific lessons.

4.4. DATA ANALYSIS

Design-based research requires analyzing data on a continuous basis throughout a study in order to
make grounded conjectures about optimal next steps in teaching (Bakker & van Eerde, 2015; Cobb et
al., 2017). Accordingly, data analysis meetings involving all authors occurred after each interview and
lesson. During each data analysis meeting, we read the session transcript while watching the
accompanying video and reviewing participants’ written work. Individual student responses to tasks



were our units of analysis, but these generally occurred in the context of whole-class discourse, so
watching the classroom video while coding participants’ contributions helped us contextualize our
findings and relate them to specific parts of lessons. Relating participants’ responses to specific lesson
tasks also helped us make conjectures about how to improve student learning in each subsequent lesson.

We began data analysis with open coding (Corbin & Strauss, 2008; Miles et al., 2020) of individual
student responses to tasks. Given our AOT framework, we coded student utterances and written work
that provided evidence of students’ “personal construction of relations of similarity between activities”
(Lobato & Siebert, 2002, p. 89) to identify connections they made during the study. We focused on
student connections between their prior and new experiences, knowledge, and reasoning strategies.
These connections were at times compatible with normative reasoning, such as when students mapped
concrete experiences from game trials in class to formal statistical representations using technology.
They were also sometimes incompatible with normative reasoning, such as when students
conceptualized the fairness of a game only in terms of the number of turns taken. Such non-normative
connections reflected the use of prior experiences (e.g., with games of chance) to approach a new
classroom task, yet they were not complete from a normative perspective. As we identified student-
generated connections, we created short descriptive codes for each one (e.g., students’ mapping of
concrete game trials to representations with technology was coded “MCT” and students’ focus solely
on the number of turns in a game when deciding on its fairness was coded “FT”). We continuously
discussed codes as we created them to reach consensus on our characterizations of the data. As we
collaboratively generated codes, they were recorded in a code book (DeCuir-Gunby et al., 2011) along
with illustrative data excerpts to help us decide if an existing code should be used for a given portion
of data or if a new one was needed.

Coding was carried out segment-by-segment for each interview and lesson. Boundaries of segments
were defined using the notion of activity re-direction (Lineback, 2015). Such re-directions occur when
teachers change the course of the lesson by posing a new task or question for students to consider.
Hence, each interview question was considered its own segment, and each new task posed during
instruction marked the beginning of a segment. During retrospective analysis, the codes were organized
using time-ordered matrices (Miles et al., 2020) summarizing segments to facilitate the construction of
a chronological account of student-generated connections over the course of the study.

Node-link diagrams (Nesbit & Adesope, 2006; Wheeldon & Ahlberg, 2011) were used to situate
student-generated connections within the contexts of interviews and lessons. The nodes in each diagram
were labeled with the incrementally more complex connections we hoped students would construct.
Directional inks were inserted between nodes to indicate embedded opportunities to observe and
facilitate student-generated connections. The node-link diagrams provided working outlines for our
descriptions of students’ reasoning in response to tasks. Visual diagramming software, Inspiration™
(2006), allowed for efficient revision of the diagrams as they were compared against the data. A sample
node-link diagram for an instructional scenario from our study appears in Figure 5.
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Figure 5. A sample node-link diagram used to characterize goals of an instructional scenario a game
of “rock, paper, scissors”.

5. RESULTS

Results are arranged chronologically to preserve the original flow of events during interviews and
lessons. We begin with pre-interviews, continue with the four instructional scenarios summarized in
Figure 4, and conclude with post-interview results. A summary of the student-generated connections
we observed during the study is provided in Figure 6A. The connections were categorized according to
the perceived relationships they indicated between prior and new experiences, knowledge, and
reasoning strategies. The top three rectangles (A-I) contain connections that build toward normative
expertise. The bottom rectangle (J-L) contains connections traditionally considered to indicate over-
generalization and negative transfer.

Making connections between mathematically isomorphic tasks set in different everyday contexts
A: Using same learned strategy to determine the fairness of games with the same mathematical
structure set in different everyday contexts.
B: Using same strategy to generate partial lists of outcomes for games with the same mathematical
structure set in different everyday contexts.
C: Explicitly noting similarities in mathematical structure between games set in different everyday
contexts
Making connections between mathematically isomorphic tasks set in similar everyday contexts
D: Linking activity of determining sample space to activity of determining probabilities
E: Linking activity of conducting empirical trials to calculating theoretical probabilities
F: Linking activity of conducting game trials to the activity of determining sample space
G: Using just one element of experience playing games to determine fairness of games (attending
solely to the number of turns or mentioning “chance” of winning without quantification)
Connecting data and context to/relevant mathematical representations
H: Using knowledge of possible game outcomes to read a tree diagram
I: Linking activities of conducting and tabulating game trials to activities of graph reading and
construction

Connections incompatible with normative thinking
J: Using simple probability strategy to determine compound probability
K: Using deterministic thinking to answer a stochastic question (outcome approach or equiprobability
bias)
L: Using informal reasoning incompatible with normative stochastic analysis (often preoccupation
with what experts would consider “surface features” of tasks)

Figure 6A. Student-constructed connections observed over the course of the study.



A timeline representation of when each connection was evident for each student appears in Figure
6B. The lighter shading in a quadrant indicates evidence of incomplete or inconsistent use of a given
connection by a student during an instructional scenario. The quadrants are arranged to match the spatial
positioning of students around the shared classroom table during lessons, with the top of the circle
corresponding to the front of the room. The spatial positioning convention is maintained for consistency
for pre- and post-interviews, though interviews were individual rather than group sessions. Rows above
the horizontal timeline represent connections building toward normative expertise rows below the
timeline represent connections traditionally considered indicative of negative transfer. The letters on
the vertical axis correspond to the student-generated connections identified in Figure 6A.
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Figure 6B. The figure shows when different student-generated connections (shown in Figure 6A) were
observed.

5.1. PRE-INTERVIEWS

During pre-interviews, we obtained data suggesting student-generated connections related to: (i)
assessing fairness in a colloquial sense and mathematical sense, (ii) identifying analogous aspects of
the two-coin task (Figure 1) and the two-spinner task (Figure 2), and (iii) determining the probabilities
of winning the two-coin game and the two-spinner game.

Participants appeared to draw mainly upon colloquial generalizations about fairness in responding
to the first interview task about a game that involved flipping one coin (Figure 3). All four students
focused solely on the number of turns each player received during the game in judging its fairness.
During his pre-interview, Tom, for example, responded, “It is fair because you get the same amount of
turns.” In their own individual interviews, the other three students similarly judged the game to be fair
because each player received the same number of turns. As we planned the first lesson for the group,
we did not want to discourage them from considering the number of turns in assessing fairness, because
such considerations are relevant, but we aimed to expand their conceptions of fairness to encompass
other relevant connections. Specifically, noticing that none of the students quantified each player’s
chance of winning the game, we aimed to help them recognize that quantification of probability is also
relevant to determining fairness in such situations.

We observed greater variation in students’ recognition of analogous elements of the two-coin and
two-spinner tasks. Laura was the only one of the four students to explicitly note similarities between
the two tasks. The following exchange took place when she was given the two-spinner task after the
two-coin task:

10



Laura:  I’'m kind of getting confused because these are both basically the same question.

Intv: How are they similar?

Laura:  Because, um, it is, so, because basically heads would be either black or white, and tails would
be black or white.

Intv: OK.

Laura:  And if, since, it says both of them need to land on black after it wins, it’s like kind of similar.

None of the other students explicitly spoke of the two-coin and two-spinner tasks as being similar
during pre-interviews. Evidence that Tom and Emilia saw the two-coin and two-spinner tasks as distinct
from one another could be seen in their approaches to them. The two concentrated on physical aspects
of carrying out trials only in the two-spinner context. Tom, for example, wrote, “You have to have the
perfect hit to land it on the black.” When asked to explain, Tom stated, “It’s on the white and like you
have to hit it like lightly (makes flicking motion) or like medium to get it on the black; but someone
might, they have to hit it really hard.” Similarly, Emilia reasoned, “If you both spin them, they’ll
probably land on the white side, or it really depends on how hard you spin it, right?”

Students’ attention to the physical aspects of spinning created a dilemma about the appropriate role
of spinner contexts in our lessons. We took Tom and Emilia’s reasoning to indicate they saw spinner
outcomes as being within the control of the user rather than being stochastic in nature (Pratt, 2000).
Ultimately, we decided to set the spinner context aside for our short seven-lesson sequence to observe
whether connections students constructed in other compound probability contexts would help them with
the spinner context when we returned to it during post-interviews.

Along with explicitly noting similarities between the two compound probability games (Figure 1
and 2), Laura used the same approach to decide if there was a 50-50 chance of winning each one. She
named three possible outcomes in the two-coin game: heads on both, tails on both, and heads on one
and tails on the other. For the two-spinner game she named black on both, white on both, and one black
and one white as possible outcomes. Although she had apparently constructed the generalization that
there is a need to determine the sample space in such situations, she did not yet account for order in
either case. She also did not yet use her partial lists of outcomes to quantify probabilities. Instead, she
stated, “I think he would either have a 100% or 0% winning because if just one arrow lands on white,
he would lose the whole game, but if both landed on black, he would have a 100% chance of winning.”
This type of thinking is resonant with the outcome approach (Konold, 1995); Laura appeared to believe
she was to give a deterministic prediction about the outcome of one trial rather than quantifying its
probability. We took Laura’s responses to indicate that the task of connecting sample space elements
to their associated probabilities would need explicit attention during instruction.

Aiden and Tom diverged in their thinking about the probability of winning each game. Even though
Aiden did not explicitly note similarities between the two-coin and two-spinner games, he used the
same approach to state the chance of winning each one. Aiden looked at the total amount of black and
white on the two spinners (Figure 2) and said there was a 50-50 chance of winning “because it’s half
black and half white,” as many students in previous studies have done (e.g., Shaughnessy & Ciancetta,
2002; Watson & Kelly, 2004). For the two-coin task, Aiden similarly reasoned that half the coin sides
were heads and half were tails. Tom’s approaches to the two tasks differed from one another. He
concluded there was a 50-50 chance of winning the two-coin game. He did not list sample space
elements but assigned a value of 25 to each coin and added the amounts, apparently attending to
monetary value rather than probability. For the spinner game, as noted earlier, Tom focused solely on
the physical process of spinning rather than on area. He said, “You have to have the perfect hit to land
on the black.” When asked how often a “perfect hit” would occur, he offered a subjective estimate:
“like, it has like a 10% chance, I think.” Hence, during classroom discourse, we aimed to draw out and
develop Aiden’s implicit perception of mathematical similarities between such tasks, in part to help
Tom recognize the need to attend to mathematical structure and area in such situations.

5.2. INSTRUCTIONAL SCENARIO 1: DRAWING CUBES
For the first instructional scenario, we used the context of drawing colored cubes from a bag. Just

as English and Watson (2016) progressed from a one-coin task to a two-coin task with students, we
progressed from one cube draw to two independent draws. Along with forming a viable instructional
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sequence, this progression allowed us to examine which student-generated connections used for
structurally similar pre-interview tasks might be used to reason in a new context.

Our first lesson with students focused on simple probability in the context of drawing cubes from a
bag. Because all four students focused only on the number of turns per player during pre-interviews,
we built the first lesson to help them expand their ideas of fairness and begin to quantify probabilities.
We had students take the same number of turns drawing one cube from a bag, with replacement. The
bag contained 2 blue cubes and 8 red, and each player scored a point when their assigned color was
drawn. After taking several turns and recording results, all participants agreed the game was not fair,
even though each player was given the same number of turns. Laura explained, “Because I kept getting
reds, I said to you that I didn’t think there was any blue in it [the bag]; so, I think there’s more red than
blue.” We then showed students the contents of the bag to emphasize the importance of taking each
player’s probability of winning into consideration, and not just number of turns, when analyzing games.

During the first lesson, students at times claimed the cube game was unfair because of the players’
actions. This was particularly apparent after the first round; when Tom was asked if he considered the
game to be fair, he said it was not, admitting, “I looked in the bag.” So, to focus participants’ attention
on mathematical considerations, during subsequent lessons, we at times had them simulate games with
a TinkerPlots™ (Konold & Miller, 2011) document we provided, emphasizing the computer had no
vested interest in who won. As with the other instructional activities, we actively elicited students’
thinking about simulated results so this information could be captured in our classroom video data
(researchers seeking to delve more deeply into this aspect may consider augmenting data collection
with screen-capture software recordings). Detailed descriptions of students’ engagement with
TinkerPlots™ are provided later in this section of the article.

In lesson 2, we had students draw two cubes with replacement. They took turns drawing one cube,
replacing it, drawing another, replacing it, and then recording the colors of each pair of cubes drawn.
Each bag contained the same number of red and blue cubes. As students gathered and represented data
from game play, they identified the possible outcomes as drawing two blue, one of each color, and no
blue. So, initially, we had them sort observed results into those three categories in a data display (e.g.,
as in Figure 7). As they worked with these data displays, we aimed to have them read the data, read
between the data, and read beyond the data (Friel et al., 2001). Reading the data involved reading values
from displays used to track results of trials. Reading between the data involved comparing frequencies
of results within displays to one another. Reading beyond the data was required to compare trends and
characteristics across different data displays. We also asked students to read behind the data
(Shaughnessy, 2007) to explain why graphs took shape as they did, hoping to motivate interest in
determining theoretical probabilities to explain the data display characteristics they observed. In
particular, we aimed to have them think about why the “one of each color” category they suggested
(Figure 7) tended to contain more observations than the other two categories to help motivate a more
careful focus on mathematical structure and sample space.

Figure 7. Student-generated line plot to represent the number of blue cubes obtained during random
draws of pairs of cubes from a bag containing an equal number of red and blue cubes.
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In accord with previous research (Friel et al., 2001), the graph comprehension activity of reading
the data caused the least difficulty for students. Students were generally able to map their experiences
with concrete play to TinkerPlots™—simulated play and read values from representations of results
they generated through concrete and simulated play. For example, when questioned, students were
readily able to say what each of the marks shown in graphs such as the one in Figure 7 represented. One
exception to this trend occurred after students first read a line plot containing the results of a
TinkerPlots™ simulation of drawing pairs of cubes with replacement. The class had tracked the results
of the simulation using a line plot with three stacks: one to show how many times no blues were drawn,
a second to show how many times one of each color was drawn, and the third to show how often two
blues were drawn (as in Figure 7). Laura and Tom temporarily lost track of what the marks in the line
plot represented, but such problems reading the data did not persist. Reading between the data, which
mainly involved comparing the heights of stacks in the line plot to one another, also did not cause any
observable difficulties; as we questioned students about the most frequent outcome, they consistently
identified it.

At the outset of the third lesson, students did TinkerPlots™ simulations on their own computers,
graphed the data in line plots like the one shown in Figure 7, and then compared results. Tom, Aiden,
and Laura produced graphs in which the middle stack was the highest. This led them to say that drawing
one of each color would be more likely than getting two reds or two blues. Aiden, for example,
remarked, ““You have a higher chance of getting one of each than no blue,” and “Getting two reds is
less likely but getting one of each color is more likely.” Likewise, Tom noticed, “There's five red and
five blue, that - and no blue is tough because it's not all blue - but, um, there's, like, five red and five
blue, it's easy to, like, get, because there's the equal amount of red and blue.” As discussion shifted to
Emilia’s data, difficulties reading behind the data emerged. Emilia’s graph differed from the other three
in that all three stacks were of equal height. Our observations did not allow us to determine if this was
simply because of variation or because of an error she made in generating or recording the data. Her
graph showed the same number of trials as the others. In any case, Emilia’s data prompted the following
exchange with Laura:

Laura: Actually, can | change my mind from, um, well | either think each color could get the most or,

um—
Teacher:  You think which one?
Laura: I think 1 of each color could get the most or like you never know because you might—because

we thought 1 of each color would get the most—
Teacher: Yeah?

Laura: -- but hers [Emilia’s] was that each of them were equal so you never know which is—
Teacher:  We never know which one is going to come out?
Laura: Um-hmm.

Emilia and Aiden then expressed thoughts similar to Laura’s. Emilia said, “So, it could be, um, like,
the same amount for all three of them, so you never really know.” Similarly, Aiden remarked, “You
never know if it’s gonna be blue-blue or blue-red.” Emilia’s data temporarily complicated students’
discernment of underlying probabilities in the game situation.

In response to the discussion caused by Emilia’s graph, we asked students to temporarily set aside
the empirical data from game play. In an attempt to draw their attention to the underlying theoretical
probabilities, we posed the writing prompt shown in Figure 8. It used the familiar cube context and an
empty table to encourage students to think about sample space. We asked students to individually write
about why the game was fair or unfair. This prompted Laura to move away from focusing solely on
Emilia’s data in favor of considering probabilities of specific outcomes. Her work and reasoning are
shown in Figure 9. Laura’s work suggested that she had begun to think about the ideas of sample space
composition and probabilities of outcomes in tandem, indicating a budding connection she did not
exhibit during pre-interviews. The other three students in the group did not show evidence of making
the same connection, even though they each completed the chart shown in Figure 8 correctly. Tom,
Emilia, and Aiden all decided that the game was fair after completing the chart. Tom wrote that the
game was fair because “There are 2 red and 2 blue and there is a 50/50 chance of a win.” Emilia wrote
that it was fair because “You never know what you’re going to draw.” We conjectured that such
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reasoning persisted because of the earlier discussion of Emilia’s data. To help students move beyond
Emilia’s data and attend to underlying mathematical structure, we decided to introduce a structurally
similar game during the next lesson, but to start by drawing students’ attention to its theoretical rather
than empirical probabilities.

You are playing a carnival game. You win a prize if you pick two blue cubes. The carnival

worker tells you this is a fair game. Use the table below to see if the worker is telling the truth.

Cube 1

Red Blue

Cube 2 Red

Blue

Figure 8. Empty table to prompt students to attend to sample space in the cube-drawing scenario.
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Figure 9. Laura’s work on the two-cube carnival game task chart shown in Figure 8.

5.3. INSTRUCTIONAL SCENARIO 2: FLIPPING A PENNY AND QUARTER
SIMULTANEOUSLY

We used the context of flipping a penny and quarter simultaneously for the second instructional
scenario. We hypothesized that beginning with a game structurally similar to the one at the end of the
first instructional scenario but asking students to explore its sample space before gathering data from
trials, would re-focus attention on the range of possible outcomes and not just empirical results. We
began with a penny and a quarter rather than two of the same type of coin to simplify initial
conversations about order in determining sample spaces; such conversations can be particularly
challenging to students initially learning about compound probability (Alston & Maher, 2003; English
& Watson, 2016; Iversen & Nilsson, 2019).

At the outset of the scenario, students were told that a penny and quarter were flipped at the same
time. Player A would receive a point if both coins landed on heads or both coins landed on tails. Player
B would receive a point otherwise. Students were asked to write, individually, if they thought the game
was fair and to explain their thinking. Tom wrote that it was fair because there were four coin sides and
two players, so there would be two chances for each person to win. Aiden believed it to be fair because
he assumed each player would get the same number of turns. Laura and Emilia both believed the game
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to be fair because each player would have the same chance of winning, but they did not systematically
analyze the probabilities. Notably, Laura did not bring her budding connection about the relationship
between sample space and probability to bear at the outset of the scenario.

In order to help students transition to systematic analyses that would help generate connections
between sample space and probability, we asked them to individually draw pictures of the different
ways each player could win a point in the penny-quarter game. Laura, Tom, and Emilia each drew all
four possible outcomes. Aiden accounted for only two outcomes: heads on each coin and heads on the
penny and tails on the quarter. When students discussed their responses to the writing prompt as a group,
Tom began to consider heads on the quarter and tails on the penny to be the same outcome as tails on
the quarter and heads on the penny. As shown in Figure 10, he crossed out the “tails on quarter, heads
on penny”” outcome he initially drew after deciding it was the same as “tails on penny, heads on quarter.”
Others disagreed with him, and Tom vacillated between considering the two outcomes to be the same
or different. When asked to respond to Tom’s opinion that the outcomes were the same, Laura said,
“Technically it’s not the same but if it’s like the outcome of the points it’s the same.” Laura’s remark
helped emphasize the importance of specifying what one means when calling outcomes, the “same.”

Poar 4 s 4:’“/“}

WTT %‘f

Pq p%
‘mme

Figure 10. Tom’s depiction of outcomes for the penny-quarter game at the outset of instructional
Scenario 2.

To help students further discern the sample space for the penny-quarter game and ground their
conversations more firmly in the game context, we had them play the game in pairs, record the results,
and then once again draw pictures of the different ways each player could win a point. After playing
the game, all the students individually drew all four possible outcomes, as we hoped. Unfortunately,
playing the game also had some unintended effects. Tom, in particular, fixated on why he had scored
only 8 points while his partner, Laura, had scored 12. He initially focused on coin weights as an
explanation, just as he had focused on physical considerations related to games in the previous
scenarios. He said, “The weight is the problem; this one—this one goes less, like spins less, because of
the weight, and this one spins more because of the weight.” Later, he returned to the idea that heads on
the quarter and tails on the penny was the same outcome as tails on the quarter and heads on the penny,
which led him to believe there was a problem with the rules of the game as well. Tom summarized by
saying, “The problem is the weight and the rules.” Laura disagreed with him, saying, “The weight didn’t
really matter.” Tom also, at least temporarily, considered the initial positions of the coins when flipped
to be important, stating,

If'it’s like this [putting quarter on his left and penny on his right] you could get
a—it’s an easier chance to get a tails—but, if you do it like this [putting penny on
his left and quarter on his right] it will be an easier chance to get heads.

Strength of flip was another consideration for Tom, as he remarked, “If it is (flipped) too fast, you don't
know what's gonna happen ... but if it’s too slow, if you like do it, like really weak, it's too slow.”
Physical considerations again temporarily drew his attention away from considering underlying
mathematical structures.

Because of the fixation on physical attributes of the two coins rather than sample space, we posed
a slightly different penny-quarter task at the beginning of the next lesson. We told students to imagine
a penny and quarter that were both perfectly balanced, and that the coin flipping was not “rigged” in
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any way (using language Tom had introduced earlier). Player A would get a point when both coins
landed on tails, and Player B would get a point otherwise. Students individually wrote about whether
or not the game was fair. All students but Emilia (whose work is shown in Figure 11) listed all four
possible outcomes and assigned one of them to Player A and the other three to Player B. After students
shared their thinking with one another, Emilia revised her response to count heads on the quarter and
tails on the penny as a separate outcome from tails on the quarter and heads on the penny. All four
students then assigned a one-fourth or 25% probability to each outcome when asked to individually
write the chance of each one. When asked to predict how many occurrences of tails on the quarter and
tails on the penny there would be in 100 trials, each student individually wrote 25. We took these events
to indicate that students had begun to recognize the need to determine sample spaces and assign
probabilities to outcomes to analyze games.

Figure 11. Emilia’s initial work and reasoning on the revised penny-quarter task.
5.4. INSTRUCTIONAL SCENARIO 3: FLIPPING TWO QUARTERS SIMULTANEOUSLY

Given that students had begun to determine sample spaces and use them to assign probabilities
during the penny-quarter scenario, we slightly altered the context for tasks during scenario 3 to
introduce a more challenging situation. Specifically, because students had begun to attend to order with
two distinct coins, we attempted to extend their reasoning by introducing two identical coins.

During scenario 3, students mainly continued to reason about sample space as they did near the end
of scenario 2. To begin scenario 3, we changed just one part of the final task from scenario 2, introducing
the situation of flipping two quarters simultaneously rather than a penny and a quarter. All other
elements of the task remained the same, including Player A receiving a point for two tails and Player B
receiving a point otherwise. When asked to write individually if they considered the game to be fair, all
four students started again by listing possible outcomes. Aiden, Tom, and Laura wrote all four possible
outcomes on their own at the start. Emilia wrote three of the four, not counting tails on quarter 1 and
heads on quarter 2 as separate from heads on quarter 1 and tails on quarter 2. Laura briefly adopted
Emilia’s viewpoint as students discussed their written solutions during class before returning to her
original solution later on. Ultimately, during class discussion, all students claimed that the sample space
contained four outcomes.

At the conclusion of the quarter-quarter instructional scenario, we told students they had a choice
of playing either the quarter-penny or quarter-quarter game at a carnival. In both cases, they would win
by flipping two tails and lose otherwise. We had them respond individually, in writing, to the question
of which carnival game provided a better chance of winning. All four students wrote that there was the
same chance of winning each game, and they maintained the same opinions during class discussion of
the written responses. Aiden and Tom explicitly quantified the chance of winning as 25%. When we
asked students to write how many occurrences of tails-tails they would expect in 200 flips, all of them
predicted 50. Given that the reasoning we observed closely paralleled that of the previous instructional
scenario, we inferred that students were able to employ several of the connections about sample space
and probability they had developed in the slightly different penny-quarter situation.
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5.5. INSTRUCTIONAL SCENARIO 4: ROCK, PAPER, SCISSORS

During the final instructional scenario, we aimed to help students extend their reasoning beyond
contexts involving two coins and four sample space elements. We conjectured that students were ready
for new contextual and structural elements because of the connections they had generated about sample
space and probabilities during the previous scenarios. Given the nature of students’ work at the
conclusion of the previous scenario, we also thought there may be an opportunity to introduce an
additional representation conventionally used to make sense of compound probability situations.
Specifically, we began the new scenario by helping students represent their thinking about previously
encountered two-coin sample spaces with tree diagrams (Konold, 1996). Then, we encouraged the use
of tree diagrams to map the sample space for a new context, the game of rock, paper, scissors (Nelson
& Williams, 2008), which contained more sample space elements than the two-coin scenarios. Our
beginning thought was that tree diagrams would be useful tools for students to use in organizing and
counting outcomes as they encountered larger numbers of sample space elements in different tasks.

We began the final scenario by reminding students of the sample space for the quarter-quarter
scenario and put an organized list on the board to represent the possible outcomes. Tom was able to
explain what the organized list represented when asked, saying, “There’s four possibilities and Player
A got one possibility to win and Player B got 3 ways to win.” Emilia explained that the probability of
each outcome on the list was 25%, saying, ““You have one option or one outcome out of four or one
option out of four.” Having elicited students’ knowledge of the organized list for the quarter-quarter
scenario, we introduced a tree diagram as another representation of the same sample space. We asked
students to state the possible outcomes for the first quarter and then drew the corresponding parts of the
tree diagram for them on the board. We did the same for the second quarter to complete the tree diagram.
When we asked students where outcomes such as “heads on the first, tails on the second” were located
in the diagram, all students but Aiden were able to circle the appropriate portions, though he was
eventually able to do so with help from others.

Having introduced the tree diagram representation, we next aimed to show how tree diagrams can
be used to map sample spaces for more complex situations, such as the game of rock, paper, scissors
(Nelson & Williams, 2008). Students collectively created an organized list to completely map the rock,
paper, scissors sample space after playing the game in pairs. Then, as with the quarter-quarter sample
space, they mapped the rock, paper, scissors sample space with a tree diagram (e.g., Figure 12). When
we asked individual students to explain how different outcomes were represented in the tree diagram,
Aiden was again the only one of the three students to struggle. Initially, he did not see how the tree
diagram represented the outcome of “rock for Player A, paper for Player B” differently from “paper for
Player A, rock for Player B.” Later in the lesson, however, Aiden was able to identify such outcomes
in the tree diagram without assistance.

Player A Player B [ Outcome Winner

LT

Figure 12. Emilia’s tree diagram for the rock, paper, scissors scenario.



To conclude the final lesson, we asked students to use the tree diagram to calculate the probabilities
of outcomes for rock, paper, scissors and determine if it was a fair game. All students calculated the
probability of “paper for Player A, scissors for Player B” to be one-ninth when asked to do so
individually in writing. Emilia explained that it was one-ninth “because you have one thing that we
picked out of nine things” (the “nine things” being the nine outcomes listed on the tree diagram). All
four students also expressed the opinion that rock, paper, scissors was a fair game. Laura explained,
“We proved that it was fair because it has three ties; there's two players, a player can win three times
and the second player can play three times, and there's most likely going to be three ties, so it is fair.”
The focus on possible outcomes and their associated probabilities differed from students’ earlier
conceptions of fairness that were limited strictly to accounting for the number of turns taken by each

player.
5.6. POST-INTERVIEWS

Individual post-interviews were held with each student a week after the final lesson. As noted
earlier, we administered the two-spinner task (Figure 2) before the two-coin task (Figure 1) to avoid
implicitly suggesting that the strategy for the two-spinner task should be the same as that used for the
two-coin task. We purposefully avoided spinners during instruction so we could observe the extent to
which connections generated in other contexts might help them reason about the two-spinner situation.

Figure 13 contrasts the connections students exhibited during pre-interviews and post-interviews.
During post-interviews, Tom and Emilia moved away from reasoning about non-mathematical features
of tasks (connection L in Figure 6A). Instead, in response to the two-spinner post-interview task (Figure
2), Aiden, Tom, and Emilia all used the strategy of reasoning there was a 50-50 chance because half of
the total area in the task picture was white and the other half was black. Although this was not a
normative strategy, for Tom and Emilia it represented a shift toward considering a mathematically
relevant aspect of the task, namely, area, rather than only physical considerations such as strength of
spin. This shift in strategy occurred even though none of the instructional scenarios during the study
involved spinners or area.
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Connections exhibited by students during pre- Connections exhibited by students during
interviews post-interviews

Note: Symbols are used to represent the four participants: Aiden (*), Laura (#), Emilia (&), and Tom (@). Underlined,
italicized letters correspond to the types of connections listed in Figure 6A.

Figure 13. Comparison of connections students used during pre- and post-interviews.
During post-interviews, all four students moved beyond saying that fairness of games depended

solely on the number of turns per player (connection G in Figures 6A and 13). Instead, they linked the
ideas of sample space and probability (connection D in Figures 6A and 13) when given the two-coin
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task (Figure 1). All four began by listing the sample space for the task, as they did during instruction.
Aiden, for example, explained the two-coin game was not fair by saying, “Because you only get a win
if both coins are heads and heads, and there’s more outcomes than just heads and heads; there's heads-
tails, tails-heads or tails-tails.” Emilia produced the work shown in Figure 14 and explained her diagram
by saying, “Heads-tails and tails-tails, and then we said in class that tails and heads aren’t the same
thing so tails-heads. And then you want to have heads-heads. So, then you have ... you want this one
(circles heads-heads) so that would be one-fourth which equals 25% chance of winning.” When asked
to explain why she considered heads-tails and tails-heads to be different outcomes, she drew upon
experiences from class playing rock, paper, scissors. Emilia said that if the interviewer had scissors and
she had paper, the interviewer would win; but, if Emilia had scissors and the interviewer had paper,
Emilia would win. She summarized by saying, “Even though it is the same hand motions or whatever
you want to call it, different people win, so it is a different outcome.” Although the others did not relate
the two-coin task to rock, paper, scissors, students’ post-interview responses demonstrated that they
were able to use strategies developed in class for the two-coin task when presented the situation again
during post-interviews.
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Figure 14. Emilia’s work on the two-coin post-interview task.

Laura also demonstrated evidence of making additional connections between the two-coin and two-
spinner tasks during post-interviews. During pre-interviews, she explicitly noted similarities between
the two tasks but did not give a complete analysis of the chance of winning each game. During post-
interviews, When Laura was asked if there was a 50-50 chance of winning the two-spinner game (Figure
2), the following exchange occurred:

Laura: I would say no.

Intv: Why do you say no?

Laura: Because if both of them land on black, it means that they win. And if both of them and on
white, it means they lose. But if one of them lands on white and one of them lands on black,
it's lose. So, it’s two to one.

Intv: So how many total outcomes do you think that there are?

Laura: Four.

Intv: Four?

Laura: Mm-hmm (affirmative).

Intv: And what are those outcomes?

Laura: Black and black. White and white. Black and white. And white and black.

To summarize her strategy, Laura said, “One chance of winning and three chances of losing.” Laura’s
strategy for the task differed from her pre-interview strategy of only partially listing the sample space
and not using the sample space to judge the probability of winning.

5.7. OVERARCHING CONNECTIONS
Along with the individual student-generated connections we have reported on so far, some larger

overarching connections can be discerned. Figure 15 depicts three key tasks in the study and dimensions
of context, variation, mathematical structure, sample space, and theoretical probability associated with
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each one (D1-D5). Expertise requires the ability to attend to and coordinate all of these dimensions.
The two-coin game, the two-cube game, and the two-spinner game were analogous along dimensions
pertaining to mathematical structure (D3 and D4), but their context features differed (D1). Observed
variation from trials (D2) at times did not match probabilistic expectations (D5). Students’ varying
abilities to connect and coordinate these dimensions to make sense of situations provide additional
insight on the nature of their developing expertise.

Two-coin game Two-cube game Two-spinner game

D1 | Salient context features: Salient context features: Salient context features:
weight and balancing blind or non-blind draws strength of spin

D2 Variation can be observed and recorded as trials are conducted

D3 Mathematical structure used as a means to explain empirical outcomes

D4 | Lose: HT, TH, HH Lose: BR, RB, RR Lose: BW, WB, WW
Win: TT Win: BB Win: BB

Mathematical structures of sample spaces are determined
D5 Probabilities associated with isomorphic sample spaces are determined

Figure 15. Dimensions of reasoning about key tasks for the present study.

Students’ responses to the three key tasks summarized in Figure 15 illustrated the influence of
students’ reasoning about task context in stochastic situations (Chow & Van Haneghan, 2016; Makar
& Ben-Zvi, 2011). Tom’s data are particularly instructive in this regard. He consistently sought to
explain observed outcomes by thinking about the mechanisms used to produce them. This was true as
he reasoned about all three games depicted in the columns of Figure 15. One might say he had
constructed a meta-connection that irregularities in random data generation mechanisms can explain
observed outcomes. This type of thinking is important, but frequently undervalued, in school curricula,
which tend to include only tasks based on the assumption that such mechanisms are never flawed
(Watson & Moritz, 2003). Tom’s classmates were at times dismissive of his concerns along this
dimension (D1 in Figure 15). Laura, for example, at one point told him that the weight of the coins
being flipped did not matter. Laura’s remark might actually indicate development of an “expert blind
spot.” Although mathematical structure and theoretical probability are important (D3, D4, and D5 in
Figure 15), focusing only on those dimensions can lead to invalid conclusions when, for example, it
turns out that dice or coins are not fairly weighted. In practice, most such tools used for generating data
do have manufacturing flaws preventing them from being perfectly balanced. Contextual reasoning (D1
in Figure 15) has a prominent role in explaining observed phenomena in such cases (Langrall et al.,
2011).

Although attention to context is important, we found that students at times needed to be prompted
to focus on other dimensions as well. Tom’s focus on the context dimension at times seemed over-
powering, blocking him from considering the other dimensions shown in the rows of Figure 15. We
used the strategy of posing idealized situations (e.g., perfectly balanced and flipped coins, simulated
cube drawing with no possibility of cheating), to prompt him and his classmates to make connections
among dimensions of mathematical structure (D3), sample space (D4), and probability (D5). This was
not done to discourage attention to the context dimension, but to direct students’ attention to other
relevant aspects of situations. Similarly, we found a need to temporarily direct attention away from the
dimension of variability (D2 in Figure 15) when Emilia’s unusual set of results led Laura and the others
to doubt their analyses of the underlying mathematical structure of the cube-drawing scenario. In that
case, we shifted to a structurally similar task that was not laden with images of Emilia’s unusual data
set. This type of teaching move, which shifts attention to other dimensions of a situation when students
become caught up in just one dimension, appears to be particularly important to support students in
generating normative connections.
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6. DISCUSSION AND CONCLUSION

It is important to acknowledge the core limitations of our study as we turn to a discussion of its
results. As a detailed examination of a single group of students, the present study was not designed to
be statistically generalizable. We cannot make claims about how prevalent the student thinking patterns
we observed may be in the larger population. We also cannot draw conclusions about how effective our
teaching strategies would be with different groups of students or if used by other teachers working in
various instructional contexts. Nonetheless, our findings do have some thought-provoking connections
to previous research and theory that are productive to consider. In closing, we reflect on: (i) a possible
structure for classroom discourse among students who exhibit attention to various dimensions of a
contextualized task, (ii) why it may be best to avoid analyzing student thinking through the lens of
negative transfer, and (iii) the non-linear progression of learning some students have when working
with two-stage compound probability problems like those used in our study.

Given the multi-dimensional nature of expertise required for reasoning about probabilistic
situations, and students’ sometimes uneven attention to each dimension, learning in this domain seems
better characterized as visiting and re-visiting dimensions relevant to tasks rather than a simple linear
progression toward deeper mathematical abstraction. Students need time and space to consider each
dimension, and teachers should be alert to the need to allow students to reason along each dimension
without becoming mired exclusively in it. For example, teachers using the five practices model (Stein
et al., 2008) could select and sequence student strategies to include in class discussion according to the
dimensions they reflect. Students like Tom can benefit from having students like Laura prompt them to
consider mathematical structure, and students like Laura can benefit from having their attention drawn
to contextual considerations by students like Tom. Mathematical and contextual considerations exist in
tandem in robust expert analyses of situations like those summarized in Figure 15; classroom discourse
should reflect this by valuing both types of contributions without letting contributions from a single
dimension dominate. We acknowledge that carrying out such teaching moves is a steep challenge for
classroom teachers. Complementary future studies are needed in order to provide additional insight into
the types of professional development that would help teachers meet the challenge.

Our findings also suggest a need for researchers to problematize the construct of negative transfer
(Chen & Daehler, 1989). Negative transfer suggests overgeneralization of previously learned ideas, but
other forces might be at play. For example, during post-interviews, on the two-spinner task (Figure 2),
Tom and Emilia used the commonly observed strategy of assigning a probability solely based on the
total spinner area shaded (Pratt, 2000; Shaughnessy & Ciancetta, 2002). This approach has been
characterized by some as the over-generalization of a strategy that works for simple probability tasks
(Iversen & Nilsson, 2019). We did not, however, use spinner tasks during instruction, and Tom and
Emilia did not use area when reasoning about spinners during pre-interviews, so it does not seem
plausible that they generalized one-spinner strategies to the two-spinner situation. Instead, the most
notable aspect of Tom and Emilia’s thinking was a shift away from only physical considerations such
as strength of spin during pre-interviews. Characterizing their post-interview thinking as
overgeneralization or negative transfer suggests a need to extinguish a misconception; characterizing it
as the beginning of reasoning about mathematical structure emphasizes that they were capable of
reasoning about an abstract task dimension, area, even if their strategies needed further development.
They may also have begun to see spinners as stochastic devices, as they no longer spoke of their
personal actions as determining the outcomes (Pratt, 2000). This would suggest a budding connection
between the notion of a random outcome and a spin rather than just misuse of previously learned
strategies. Focusing on the detection of such small-scale connections using an AOT perspective holds
more potential to inform instruction than simply characterizing such responses as indicative of negative
transfer.

Salient findings from the present study about learning and teaching compound probability can be
summarized using an extended metaphor about travel. In regard to learning, students generated
connections on the journey toward expertise as they traversed within and among several dimensions
(D1-D5) relevant to the content. Although all of these dimensions are important to explore (English &
Watson, 2016), students’ journey toward expertise was not well-characterized as a simple linear
progression from dimensions related to contextual intuitions and experimental probabilities to those
involving formal probabilities. Rather, the journey was most profitable when they visited and revisited
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dimensions of context, variation, and mathematical structure rather than lingering too long in any given
one. Instructors served as tour guides familiar with the disciplinary landscape who would direct students
to traverse among all relevant dimensions. At times, this required beginning an instructional scenario
journey with abstract mathematical structure rather than the more concrete aspects of context and data
generated from trials. Traversing to another dimension, such as mathematical structure, did not mean
permanently leaving other dimensions. Rather, fluidly moving among all dimensions relevant to a
problem situation was the ultimate goal. Continuously revisiting all dimensions of relevance helps
students generate well-traveled connecting pathways that provide ready access to all dimensions they
need to visit to understand a given compound probability problem situation.

ACKNOWLEDGEMENTS

This material is based on work supported by the National Science Foundation Grant DUE-1658968.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

Alston, A., & Maher, C. A. (2003). Modeling outcomes from probability tasks: Sixth graders reasoning
together. In N. A. Pateman, B. J. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th Conference
of the International Group for the Psychology of Mathematics Education, Honolulu, HI (Vol. 2,
pp. 25-32).

Bakker, A., & van Eerde, D. (2015). An introduction to design-based research with an example from
statistics education. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Doing qualitative
research: Methodology and methods in mathematics education (pp. 429-466). Springer.

Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far
transfer. Psychological Bulletin, 128(4), 612—637. https://doi.org/10.1037/0033-2909.128.4.612

Batanero, C., Henry, M., & Parzysz, B. (2005). The nature of chance and probability. In G. A. Jones
(Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 15-37). Springer.
https://doi.org/10.1007/0-387-24530-8 2

Bransford, J. D., & Schwartz, D. L. (1999). Rethinking transfer: A simple proposal with multiple
implications. Review of Research in Education, 24(1), 61-100.
https://doi.org/10.3102/0091732X024001061

Chen, Z., & Daehler, M. W. (1989). Positive and negative transfer in analogical problem solving by 6-
year-old children. Cognitive Development, 4(4), 327-344. https://doi.org/10.1016/S0885-
2014(89)90031-2

Chow, A. F., & Van Haneghan, J. P. (2016). Transfer of solutions to conditional probability problems:
Effects of example problem format, solution format, and problem context. Educational Studies in
Mathematics, 93, 67-85. https://doi.org/10.1007/s10649-016-9691-x

Cobb, P., Jackson, K., & Sharpe, C. (2017). Conducting design studies to investigate and support
mathematics students’ and teachers’ learning. In J. Cai (Ed.), Compendium for research in
mathematics education (pp. 208-233). National Council of Teachers of Mathematics.

Common Core State Standards Initiative. (2010). Common core state standards for mathematics.
http://www.corestandards.org/

Corbin, J. & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for
developing grounded theory (3rd ed.). SAGE Publications.

DeCuir-Gunby, J. T., Marshall, P. L., & McColloch, A. W. (2011). Developing and using a codebook
for the analysis of interview data: An example from a professional development project. Field
Methods, 23(2), 136-155. https://doi.org/10.1177/1525822X10388468

English, L. D., & Watson, J. M. (2016). Development of probabilistic understanding in fourth grade.
Journal for Research in Mathematics Education, 47(1), 28-62.
https://doi.org/10.5951/jresematheduc.47.1.0028

Fischbein, E., & Snarch, D. (1997). The evolution with age of probabilistic, intuitively based
misconceptions. Journal for Research in Mathematics Education, 28(1), 96-105.
https://doi.org/10.2307/749665

22



Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making sense of graphs: Critical factors influencing
comprehension and instructional implications. Journal for Research in Mathematics Education,
32(2), 124-158. https://doi.org/10.2307/749671

Halcyon Software. (2006). Inspiration software (Version 8) [Computer Software].

Iversen, K., & Nilsson, P. (2019). Lower secondary school students’ reasoning about compound
probability in spinner tasks. Journal of Mathematical Behavior, 56, Article 100723.
https://doi.org/10.1016/j.jmathb.2019.100723

Kimball, D. R., & Holyoak, K. J. (2000). Transfer and expertise. In E. Tulving & F. Craik (Eds.), The
Oxford handbook of memory (pp. 109-122). Oxford University Press.

Konold, C. (1995). Issues in assessing conceptual understanding in probability and statistics. Journal
of Statistics Education, 3(1). https://doi.org/10.1080/10691898.1995.11910479

Konold, C. (1996). Representing probabilities with pipe diagrams. Mathematics Teacher, 89(5), 378—
382. https://www.jstor.org/stable/27969794

Konold, C., & Miller, C. (2011). TinkerPlots (Version 2.3 [Computer Software]. Learn Troop.

Langrall, C., Nisbet, S., Mooney, E., & Jansem, S. (2011). The role of context expertise when
comparing  data.  Mathematical  Thinking and  Learning, 13(1&2), 47-67.
https://doi.org/10.1080/10986065.2011.538620

Lineback, J. E. (2015). The redirection: An indicator of how teachers respond to student thinking.
Journal of the Learning Sciences, 24(3), 419-460. https://doi.org/10.1080/10508406.2014.930707

Lobato, J. (2003). How design experiments can inform a rethinking of transfer and vice versa.
Educational Researcher, 32(1), 17-20. https://www.jstor.org/stable/3699930

Lobato, J. (2012). The actor-oriented transfer perspective and its contributions to educational research
and practice. Educational Psychologist, 47(3), 232-247.
https://doi.org/10.1080/00461520.2012.693353

Lobato, J., & Siebert, D. (2002). Quantitative reasoning in a reconceived view of transfer. Journal of
Mathematical Behavior, 21(1), 87-116. https://doi.org/10.1016/S0732-3123(02)00105-0

Lockwood, E. (2011). Student connections among counting problems: An exploration using actor-
oriented transfer. Educational Studies in Mathematics, 78(3), 307-322.
https://doi.org/10.1007/s10649-011-9320-7

Lysoe, K. O. (2008). Strengths and limitations of informal conceptions in introductory probability
courses for future lower secondary teachers. In M. Borovcnik, D. Pratt, Y. Wu, & C. Batanero
(Eds.), Research and development in the teaching and learning of probability (pp. 1-14).
International Association for Statistical Education.

Makar, K., & Ben-Zvi, D. (2011). The role of context in developing reasoning about informal statistical
inference. Mathematical Thinking and Learning, 13(1&2), 1-4.
https://doi.org/10.1080/10986065.2011.538291

Miles, M. B., Huberman, A. M., & Saldafia, J. (2020). Qualitative data analysis: A methods sourcebook
(4th ed.). SAGE Publications.

Moyer, P. S., & Milewicz, E. (2002). Learning to question: Categories of questioning used by preservice
teachers during diagnostic mathematics interviews. Journal of Mathematics Teacher Education, 5,
293-315. https://doi.org/10.1023/A:1021251912775

Nelson, C., & Williams, N. (2008). A fair game? The case of rock, paper, scissors. Mathematics
Teaching in the Middle School, 14(5), 311-314. https://www.jstor.org/stable/41183143

Nesbit, J. C., & Adesope, O. O. (2006). Learning with concept and knowledge maps: A meta-analysis.
Review of Educational Research, 76, 413-448. https://doi.org/10.3102/00346543076003413

Pratt, D. (2000). Making sense of the total of two dice. Journal for Research in Mathematics Education,
31(5), 602-625. https://doi.org/10.2307/749889

Ron, G., Dreyfus, T., & Hershkowitz, R. (2017). Looking back to the roots of partially correct
constructs: The case of the area model in probability. Journal of Mathematical Behavior, 45, 15—
34. https://doi.org/10.1016/j.jmathb.2016.10.004

Shaughnessy, J. M. (2007). Research on statistics learning and reasoning. In F. K. Lester (Ed.), Second
handbook of research on mathematics teaching and learning (pp. 957-1009). Information Age
Publishing.

23



Shaughnessy, J. M., & Ciancetta, M. (2002). Students’ understanding of variability in a probability
environment. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on the
Teaching of Statistics, Cape Town. https://iase-web.org/documents/papers/icots6/6a6_shau.pdf

Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive
mathematical discussions: Five practices for helping teachers move beyond show and tell.
Mathematical Thinking and Learning, 10(4), 313-340.
https://doi.org/10.1080/10986060802229675

Vidakovic, D., Berenson, S., & Brandsma, J. (1998). Children’s intuition of probabilistic concepts
emerging from fair play. In L. Pereira-Mendoza, T. Wee Kee, W.-K. Wong (Eds.), Proceedings of
the Fifth International Conference on Teaching Statistics, Vol. 1, Singapore (pp. 67-73).
International Statistical Institute.

Wagner, J. F. (2010). A transfer-in-pieces consideration of the perception of structure in the transfer of
learning. The Journal of the Learning Sciences, 19(4), 443-479.
https://doi.org/10.1080/10508406.2010.505138

Watson, J. M., & Kelly, B. (2004). Expectation versus variation: Students” decision-making in a chance
environment. Canadian Journal of Science, Mathematics, and Technology Education, 4(3), 371-
396. https://doi.org/10.1080/14926150409556620

Watson, J. M., & Moritz, J. B. (2003). Fairness of dice: A longitudinal study of students’ beliefs and
strategies for making judgments. Journal for Research in Mathematics Education, 34(4), 270-304.
https://doi.org/10.2307/30034785

Webb, P., Whitlow, J. W., Jr., & Venter, D. (2017). From exploratory talk to abstract reasoning: A case
for far transfer? Educational Psychology Review, 29, 565-581. https://doi.org/10.1007/s10648-016-
9369-z

Wheeldon, J., & Ahlberg, M. K. (2011). Visualizing social science research: Maps, methods, and
meaning. SAGE Publications.

Zawojewski, J. S., & Shaughnessy, J. M. (2000). Data and chance. In E. A. Silver & P. A. Kenney
(Eds.), Results from the seventh mathematics assessment of the National Assessment of Educational
Progress (pp. 235-268). National Council of Teachers of Mathematics.

RANDALL E. GROTH
Salisbury University
1101 Camden Ave.
Salisbury, MD 21801
USA

24



