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ABSTRACT 

 
This study considers the evolving influence of variation and expectation on the 
development of school students’ appreciation of distribution as displayed in their 
construction of graphical representations of data sets. Three interview protocols are 
employed, presenting different contexts within which 109 students, ranging in age 
from 6 to 15 years, could display and interpret their understanding. Responses are 
analyzed within a hierarchical cognitive framework. It is hypothesized from the 
analysis that, contrary to the order in which expectation and variation are introduced 
in the school curriculum, the natural tendency for students is to acknowledge 
variation first and then expectation. 
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1. TERMINOLOGY 
 
Like many words used in statistics, “distribution” has a more or less sophisticated 

meaning depending on the adjective placed in front of it. Among the synonyms used for 
distribution in the Chambers dictionary (Kirkpatrick, 1983) are dispersal, range, 
allotment, and classification. These are in turn based on the word “distribute” meaning 
variously “to divide among several … to disperse about a space … to spread out” 
(p. 364). These descriptions are useful starting points in exploring children’s experiences 
with graphing distributions. Moore and McCabe (1993) progress to describe distribution 
in terms of variation, which they treat as an undefined term, and variable, which is “any 
characteristic of a person or thing that can be expressed as a number” (p. 2): “The pattern 
of variation of a variable is called its distribution. The distribution records the numerical 
values of the variable and how often each value occurs” (p. 6). They go on to say that 
distributions are best displayed graphically. These basic representations are often called 
frequency distributions to distinguish them from theoretical distributions based on 
continuous curves. 

For the school-age students interviewed in this study, distributions are likely to 
represent collections of data from relatively small data sets that are shown graphically in 
stacked dot plots, bar graphs, or histograms. The idea of a theoretical distribution such as 
the normal distribution is not part of their vocabulary or experience. For some younger 
students idiosyncratic representations may satisfy the less restrictive constraints of the 
Chambers definition but still show range, spread, and classification. Bakker and 
Gravemeijer (2004) for example described Grade 7 students’ early work with case-value 
plots as the beginning of exploration of characteristics of distributions. 

Although Moore and McCabe (1993) treated “variation” as an undefined term, 
Reading and Shaughnessy (2004) distinguished between “variability,” as the 
                                                      
Statistics Education Research Journal, 8(1), 32-61, http://www.stat.auckland.ac.nz/serj 
© International Association for Statistical Education (IASE/ISI), May, 2009 



33 
 

characteristic of an entity that is observable, and “variation,” as the describing or 
measuring of that characteristic. This is the distinction used in this study because for 
school students it is the act of describing or representing variability that appears in the 
graphs created by them. The term “expectation” is chosen in contrast to “variation,” 
usually reflecting the meaning of the expected value (e.g., mean) of a probability 
distribution. This translates to the familiar terms middle or average for frequency 
distributions. It may also however in some contexts refer more colloquially to the 
expected shape of a distribution, for example showing a particular trend. 

 
2. OVERVIEW OF THE PROBLEM AND ITS IMPORTANCE 

 
Although not told that they are beginning to learn about distributions, children in 

early childhood classrooms create pictographs by recording the favorite fruit of members 
of the class or the modes of transport used to get to school. Throughout the school years 
more complex forms of representation are introduced until perhaps at first year university 
level students, in some countries, are expected to understand the theoretical 
underpinnings of the normal, binomial, Poisson, exponential, and other distributions. 
Although students may be able to create various types of graphs for different sets of data, 
as required to meet curriculum objectives, a larger objective in terms of the goal of 
statistical literacy when students leave school is to be able to tell a story from a context 
with a distribution that displays variation, clustering, middles, and surprises. This may or 
may not involve a conventional text-book type of graph. Of interest from an educational 
perspective is the development that takes place in students’ abilities to create 
representations that are effective in displaying the variation in data sets that will best tell 
the stories in the appropriate contexts.  

In parallel with the introduction of various increasingly complex graphical forms, the 
data handling curriculum introduces measures of center, measures of chance, and later 
measures of spread. These are typically the arithmetic mean, the counting-of-favorable-
outcomes approach to probability, and the standard deviation. The first two are associated 
with the statistical concept of expectation, whereas the third is associated with the 
concept of variation. The complexity of the calculations required for the standard 
deviation means that it is not introduced until the final school years and it has been 
suggested by Shaughnessy (1997) that the associated concept of variation traditionally 
has not received very much explicit attention until then. Whether this apparent 
differentiation in emphasis on the two ideas of expectation and variation has an influence 
on students’ developing ideas of distribution is unknown. The purpose of this study is to 
explore students’ efforts in graphing distributions for evidence of these two concepts. 

 
3. BACKGROUND 

 
The relationship of school students’ understanding of variation and expectation and 

their understanding of distribution has been slow to emerge in the literature, following an 
initial focus on graphing skills. Asking students to create representations for contexts 
without specific data has provided a window on developing understanding of the 
relationship. 

Historically the study of students’ creation and interpretation of graphical 
representations has mainly been related to the conventional production of school-taught 
graphical forms, usually based in algebra (e.g., Kerslake, 1981; Leinhardt, Zaslavsky, & 
Stein, 1990) but sometimes in relation to data (e.g., Curcio, 1987; Curcio & Artzt, 1996; 
Friel, Curcio, & Bright, 2001). In viewing the school-level conception of distribution as 
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“graphing,” there has been considerable attention to students’ abilities to create various 
graphical types, with emphases for example both on what types should be taught when 
(e.g., Friel et al., 2001) and on appropriate scaling, labeling, and directionality of plots 
(e.g., Leinhardt et al., 1990; Mevarech & Kramarsky, 1997). Until recently, however, 
explicit consideration of variation in relation to graphical representations has not been a 
feature of research. The pleas of Green (1993) and Shaughnessy (1997) brought variation 
generally to the attention of statistics educators interested in student understanding of the 
chance and data curriculum at the school level.  

Explicit attention to variation included a focus on how specific features of graphs 
influence decision making, for example in comparing two data sets presented in graphical 
form (e.g., Watson, 2001, 2002). The relationship of variation to the statistical concept of 
distribution is close but intuitively variation is a term covering all sorts of observed 
change in phenomena whereas distribution is a more formal notion based on graphs that 
is built into the later years of the school curriculum (National Council of Teachers of 
Mathematics [NCTM], 2000). The work of delMas and Liu (2003) illustrated this in 
relation to the understanding of standard deviation and spread at the early tertiary level, 
whereas Petrosino, Lehrer, and Schauble (2003) showed that relatively formal ideas about 
spread and difference could be introduced as early as Grade 4. Ben-Zvi and Amir (2005) 
explored emerging ideas of distribution with three Grade 2 students in considering data 
on the loss of “baby” teeth. They found, for example, that when speculating about data 
(and implicitly distributions) the students were reluctant to suggest repeated values. 
Considering questions about data explored by elementary students, Russell (2006) found 
students who focused on individual values, particularly the mode, as well as those who 
saw “clumps” of data values, or thought about “middles” in an intuitive sense. She made 
specific suggestions for moving students to an “aggregate” view of data distributions as 
described by Konold, Higgins, Russell, and Khalil (2003). Further evidence of such a 
developmental pattern was presented by Friel, O’Connor, and Mamer (2006) who 
observed student explorations of sugar content in cereals and of heart rates. In both cases 
comparing distributions of data sets was an integral part of the investigation. Looking 
more explicitly at the expected shape of distributions, Shaughnessy (2006) described 
middle and high school students’ decisions about “real” or “fake” data, finding various 
strategies for decision making. These included a focus on outliers, on the whole range of 
possible outcomes, on the likely range of outcomes, and on the distance from a fixed 
point, usually the expected center. The work of Watson and Kelly (e.g., 2002a) indicated 
that general understanding related to variation, and at times specifically related to 
distributions of outcomes (e.g., Watson & Kelly, 2004a), could be improved with 
instruction at the school level.   

Although variation in data creates distributions, there are two other aspects of 
statistical settings that are likely to have an impact on what a graph looks like. One aspect 
is the presence of some underlying expectation that can be observed in the distribution, 
for example a peak in the center of a symmetric distribution or the uniform nature of 
single die outcomes. In a theoretical distribution such expectation determines the shape of 
the distribution, for example the proportion of “successes” in a binomial distribution or 
the constancy of a uniform distribution. A second aspect in an actual empirical situation 
is that there is likely to be variation from the theoretical distribution itself. Hence the 
person creating a graph may have to consider the variation from expectation that creates a 
distribution (or trend), as well as the variation from the expected distribution. The 
question of how much variation from an expected distribution is considered realistic in a 
given situation depends to a large extent on the graph-drawer’s experience with similar 
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contexts in the past. This can make the creation of representations from verbal 
descriptions quite complex. 

Depending on previous learning experiences, representations may be based on 
traditional graphical forms or may be quite unique. The latter may be difficult for others 
to interpret, even for experts (e.g., Roth & Bowen, 2003). Calls to allow students to create 
their own graphs (e.g., Curcio & Artzt, 1996) then place pressure on researchers to 
interpret the meaning of graphs if the students are no longer available to explain what 
they have done. Initial choice of what data values, or type of data values, to represent, 
may not in the end suit the story expected to be told.  

Asking students to create graphs of variables based only on verbal descriptions has 
been the basis of occasional studies in mathematics education. Swan (1988) for example 
was interested in tasks such as showing in a graph how the price per ticket varies with 
group size for a fixed total cost. Mevarech and Kramarsky (1997) and Moritz (2002) 
considered tasks representing the situation of the amount of time a student studies and the 
level of grade that is obtained. Moritz (2000) also considered student representations of 
growing taller with age but stopping at age 20. The impression of researchers is that such 
tasks are more difficult than straightforward representation of data values, perhaps due to 
the need to appreciate context and visualize a trend or association rather than remember 
rules for creating axes and plotting points. 

The relationship of the order in which expectation and variation are emphasized in 
the school curriculum and the order in which students develop an appreciation of the two 
concepts was explored by Watson (2005). She used quotes from students from 
preparatory grade (6-year-olds) to high school to hypothesize that students’ intuitions 
develop in the reverse order to that suggested in the data handling curriculum. The 
youngest students for example were able to suggest variation, with different numbers of 
red lollies in different groups of 10 drawn from a container with 50% red lollies in it 
(e.g., 4, 5, 1, 3, 6, 8) but unable to predict expected numbers clustered as suggested by the 
proportion of reds in the container. Predictions were likely to be based on favorite 
numbers or the size of the student’s hand. By Grade 7 most students were able to provide 
predictions based on half of the lollies being red and reasonable variation of values 
around this (e.g., 5, 3, 6, 4, 5, 4). The current study presents a detailed analysis of the 
same data set with respect to graphical representations to support further the hypothesis. 
At the same time the beginnings of a more sophisticated idea of distribution are 
documented. 

 
4. RESEARCH QUESTIONS 

 
The research questions for this study are based on three tasks in different contexts 

that required students to create representations of data sets. 
1. What levels of sophistication are shown in terms of the acknowledgement of 

variation and expectation in the creation of graphical representations of distributions 
of data sets? 

2. Does there appear to be a trend for higher levels of performance with later grades? 
 

5. METHOD 
 

5.1. TASKS 
 
Three interview protocols are the basis of the exploration in this study. As part of the 

larger projects in which these interviews were embedded, several hundred students 
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completed surveys based on concepts in the chance and data curriculum (Watson, 2006). 
The interviews took place in order to focus on understanding that could be displayed with 
extra time and in-depth questioning (Burns, 2000, pp. 582-3). In particular, aspects of 
expectation and variation were explored in relation to the distributions created by 
students in completing the tasks. 

In each case students were asked to create a representation of a data set or situation. 
Each context was different, giving the opportunity to compare and contrast the attempts 
at creating distributions to tell the story in data. The first, BOOKS, was based on the 
creation of pictographs given concrete materials in an interview setting (Watson & 
Moritz, 2001; see Appendix A). Students were given cards depicting books and people 
and asked to represent the specified numbers of books people had read (e.g., “Lisa read 
6,” “Danny read 3”) on a table top. The names of children and numbers of books read 
were supplied by the interviewer and questions of interpretation and prediction were 
asked after the representation had been created. The data presented showed a tendency 
for girls to read more books than boys. The second task, WEATHER, was based on the 
description of average temperature: “Some students watched the news every night for a 
year, and recorded the daily maximum temperature in Hobart. They found that the 
average maximum temperature in Hobart was 17° C” (Watson & Kelly, 2005; see 
Appendix B). After initial questions, including predictions for maximum temperatures for 
six days of the year, students were asked to describe the daily maximum temperature for 
Hobart over a year in a graph. The third task, LOLLIES, was based on an experimental 
situation where students were asked to imagine a container with 100 lollies mixed up in 
it: 50 red, 20 yellow, and 30 green (Kelly & Watson, 2002; Reading & Shaughnessy, 
2000; see Appendix C). They were asked to imagine the outcomes from pulling out 10 
lollies and to suggest the number of red lollies in the 10 from six such trials. After other 
questions and six experiments from an actual container as described, they were asked to 
draw a picture of the imagined outcomes of 40 such experiments.  

 
5.2. SAMPLE 

 
The student work chosen for analysis in this study was combined from responses in 

two different studies. Students in Grades 3 to 9 were chosen to be interviewed based on 
interesting or unusual responses to the in-class survey. Teachers advised on the suitability 
of the students to articulate their views to the interviewers. Parental and student 
permission was granted for the interviews. Some students completed more than one task. 
The preparatory students (P) were 6-year-old students described in Watson and Kelly 
(2002b) chosen by their teacher as high achieving in number skills and happy to talk to 
visitors. Again parental permission was obtained. They were asked all three protocols. 
For the WEATHER and LOLLIES protocols, the same students in Grades 3, 5, 7, and 9 
answered both. A summary of the number of students in each grade completing each task 
is given in Table 1. 

 
Table 1. Number of students interviewed for each task by grade 

 
                                 Grade 
Task P 3 5 7 9 Total 
BOOKS 7 6 8 14 8 43 
WEATHER 4 18 18 15 15 70 
LOLLIES 7 18 18 15 15 73 
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5.3. ANALYSIS 
 
Two criteria are the basis of the analysis reported in this paper. One criterion is the 

framework from the work of Biggs and Collis (1982; Biggs, 1992; Pegg, 2002a, 2002b) 
in cognitive psychology. Their Structure of Observed Learning Outcomes (SOLO) model 
suggests five levels of performance that may be assessed in relation to a task that is set 
with the expectation of success in the mode of cognition of students during their years of 
schooling. These levels and references to characteristics of responses shown are given in 
Table 2 (see also Watson & Moritz, 2000). 

 
Table 2. Summary of SOLO level expectations for tasksa 

 
Name Elements Conflict (should it arise) 
Level 0: 
Prestructural 

No elements related to task employed 
in response 

No recognition of 
conflict/contradictions 

Level 1: 
Unistructural 

Single element of task employed in 
response 

No recognition of 
conflict/contradictions 

Level 2: 
Multistructural 

Multiple elements employed in 
response, usually in sequence 

Recognition of 
conflict/contradictions but 
inability to resolve adequately 

Level 3: 
Relational 

Multiple elements employed in a 
coordinated, integrated fashion in 
response 

Resolution of conflict that 
arises in task 

Level 4: 
Extended abstract 

Response goes beyond Relational 
level to introduce other elements not 
in the initial task but relevant to its 
extension 

May suggest potential for 
further conflict and resolve or 
give alternatives 

aSummary adapted from Biggs & Collis (1982), Pegg (2002a), and Watson & Moritz (2000). 
 

The other criterion for analysis is related to the statistical appropriateness of the 
responses given. For these tasks this has to do with creating a representation that displays 
aspects of expectation as expressed in the task as well as appropriate variation. This 
should result in some kind of distribution that tells the story of the task set. For BOOKS, 
the pictograph should tell a frequency story of the number of books each child has read. 
The children’s names provide cases against which case values are recorded. This is a case 
value graph (Konold & Higgins, 2003) of the type discussed by Moritz (2000, 2002), 
Pfannkuch, Rubick, and Yoon (2002), and Chick (2004) as an introduction to considering 
frequency. The names may be placed in no special order, in alphabetical order, or ordered 
by the frequency associated with each. For the WEATHER task it is likely that a time 
series graph is drawn representing either daily maxima or monthly averages of daily 
maxima. In the case of daily values this is a transition from a case value graph. Using the 
frequency of days whose maximum temperature is each value in the range, say 9 to 34 
(totaling 365), would produce a frequency distribution. The LOLLIES task also suggests 
representation of case values, this time with respect to 40 draws of 10 lollies from a 
container. Each draw results in a number of red lollies varying from 0 to 10. If these are 
recorded as case values from 1 to 40 serially, a representation similar to a time series 
graph is created. Counting and recording frequencies for each of these 40 outcomes in 
categories 0 to 10 produces an approximation to a random probability distribution. Data 
are ordered in 11 groups and related to a theoretical premise (the binomial distribution). 
The task for LOLLIES hence appears the most difficult statistically of the three tasks. 
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Case value plots may not look alike but they are characterized by the display of count or 
measurement values (e.g., number of books read, maximum temperature, number of red 
lollies) for individual identifiable cases (named child, day of the year, numbered student). 
When the cases are strictly ordered (e.g., successive days of the year, successive years, or 
successive trials) the graph appears as a time series graph (e.g., of maximum temperature, 
of number of red lollies). A different format emerges when the graph changes to 
recording the frequency distribution of the variable of interest rather than successive case 
values. Here the range of possible values of the variable is plotted (usually on the 
horizontal axis) (e.g., 0 to 7 books read, minimum to maximum daily maximum 
temperature, 0 to 10 red lollies) and frequencies are recorded vertically (e.g., number of 
children who read X books, number of days when the maximum temperature was X 
degrees, or number of times X red lollies were drawn).  

The clustering of responses to the three tasks (Miles & Huberman, 1994, p. 248) with 
the SOLO framework as an implicit structure led to descriptions of the levels that, while 
reflecting the inclusion of the more relevant elements, also identified variation as the key 
initial element. Variation was then linked in more appropriate and structurally complex 
fashions to the data before the element of expectation was introduced. These more 
explicit labels for the levels are introduced in Table 3 and indications of typical responses 
for each graph creation task are given. Coding of representations was based on these 
levels. It was completed independently and confirmed by two researchers, one of which 
was the author. 

 
Table 3. Redefined levels for tasks in this study with examples 

 
 BOOKS WEATHER LOLLIES 
Level 0: 
Idiosyncratic – No 
indication of variation 
or expectation 

Indistinguishable 
piles of books on 
top of people 

Drawings of wind 
or a weather map 

Drawings of lollies 
and children 

Level 1: 
Unstructured variation 

Books and 
children spread 
about 

Summer/Winter 
Tables of 
temperatures 

Lists of numbers 
of lollies 

Level 2: 
Variation shown by 
value 

Children in a line 
with books in 
perpendicular lines 

Successive dates 
with temperatures 

Successive draws 
in a series, or 
frequency with 
variation only 

Level 3: 
Initial 
acknowledgement of 
expectation 

Children ordered 
by books read 
(least to most) or 
reference to 
middle 

Seasonal change Acknowledgement 
of middle 

Level 4: 
Integration of variation 
and expectation 

Prediction based 
on middle/mean, 
and distinguished 
variation 

Seasonal and daily 
change 

Distribution 
centered on five 

 
The representations presented in this paper are not randomly selected but purpose-

chosen as typical of the levels of response identified from the two data sets, as well as 
illustrating aspects of variation and expectation displayed. They demonstrate proposed 
hierarchies in terms of structure and appropriateness. Following the presentation of 
clusters of responses for the three tasks, a summary is presented across tasks. 
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6. RESULTS 
 

6.1. BOOKS 
 
Although the BOOKS task asked students to create a case value pictograph, several 

questions gave students the opportunity to highlight aspects of the data set and the 
variation and expectation present in it (see Appendix A). In the final data set presented to 
students for example, there were two children who had each read four books. Students 
were also asked to show how the pictograph would look after all children had been to the 
library and selected another book. Of interest in the pictographs presented is the degree to 
which variation is catered for in the distributions created by the students. 

At Level 0, the piling of books on top of or beside the pictures of the children appears 
to preclude any description of variation in the number of books children had read. 
Examples of this approach are shown in Figure 1 and although all students displayed one-
to-one accuracy in counting, this is not visible in the display, and the responses are 
considered prestructural or idiosyncratic with respect to representing variation.  

 

  

 
Figure 1. No visible (or very little) variation shown in representation (Level 0) 

 
The pictographs shown in Figure 2 display variation in the number of books read, 

either through a scattered representation of both children and books or through a more 
ordered representation of books for still scattered children. Showing a single aspect of 
variation these responses are considered to be Level 1. 

 

  

 
Figure 2. Variation clear but unstructured (Level 1) 

 
In Figure 3 the children are placed either vertically or horizontally along the edge of 

the pictograph in order to line up the books in a grid format. In the lower left pictograph 
the additional books from the library are displayed on the far side of the representation, 
whereas in the pictograph on the lower right, two children have been placed by the four 
books that they each had read. Difficulty occurred for this student, however, because the 
additional library book was represented twice rather than once (shown by placing two  
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Figure 3. Variation shown in rectangular format (Level 2) 
 

books at right angles at the end of the row). These responses are judged to be Level 2 in 
taking into account at least two aspects of representing difference among the children in 
the number of books they had read. 

Up to Level 2, students did not look at the shape of the data in making predictions 
about how many books a new student to the class might have read (see Appendix A). 
Many younger students refused to answer the question, some saying they could not do so 
because they did not know the student and some because they did not want to make a 
guess. Other students provided values based on the gaps in the displays they had created. 

At Level 3, responses indicated an intuition about expectation within the displayed 
variation, either through rearranging the pictograph or making informal reference to the 
middle. The representations in Figure 4 order the case values so that variation is more 
easily gauged and the range of values from minimum to maximum is clear. In the 
pictograph on the far right the children who had each read four books are again placed 
side by side but this time the extra library book is placed on the other side of the children 
and only one book is used for the two children with four books. When asked how many 
books the new students Paul or Mary might have read, some students suggested informal 
references to middle.  

 
Instructor:  Suppose Paul comes along … how many might he have read?  
Student:  About 3 because it is in the middle of all the other numbers.  
Instructor:  … Mary? … similar or different? 
Student: Probably the same.  
Instructor:  You would be pretty sure Paul had read 3? 
Student:  No, you wouldn’t know, you would just guess. 

 
This type of response was also classified as Level 3 in moving toward an expected value. 

 

  

 
Figure 4. Ordered variation in the display (Level 3) 
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To be classed as Level 4 a response had to address expectation and variation 
explicitly in the prediction question about how many books a new student to the class, 
Paul or Mary, might have read. Sophisticated responses employing both variation and 
expectation are illustrated by the following response.  

 
Instructor:  Suppose Paul comes along … how many might he have read? 
Student: … About 4 probably.  
Instructor:  Why?  
Student: Because if you add them all up and then divide them, roughly that’s what you 

get. It is about that anyway.  
Instructor:  … Mary? … same or different? 
Student: I suppose you could add up the girls and the boys and keep them separate.  
Instructor:  Why?  
Student:  Because the girls are obviously more interested in reading. 

 
Noticing the variation between boys and girls and separating the estimates was typical of 
Level 4 responses. Table 4 summarizes the responses by grade and level for the 43 
students who responded to the BOOKS interview protocol. Only students from Grade 7 
began to consider expectation in their distributions and/or predictions. 

 
Table 4. Summary for BOOKS protocol (n = 43) 

 
 Grade 
 P 3 5 7 9 

Level 0 1 3 2  1 1 
Level 1 3 1 3  1 1 
Level 2 3 2 3  5 2 
Level 3 0 0 0  4 2 
Level 4 0 0 0  3 2 
Total 7 6 8 14 8 

 
6.2. WEATHER 

 
For the WEATHER protocol (Appendix B) students were asked within the context of 

a statement about the average daily maximum temperature to draw a graph of the 
temperature in Hobart for a year; no grid or framework was provided. Later students were 
asked to judge three other representations, as shown in Appendix B. The appendix also 
shows the questions asked before students were asked to draw a graph of the maximum 
daily temperature throughout the year. It was expected that students would be familiar 
with variation in the weather context, especially trends associated with the seasons, but 
this was not introduced by the interviewer.  

Some students drew pictures rather than graphs, some of these depicting variation and 
others not. Those shown in Figure 5 are static in nature, although telling something about 
daily maxima. These representations are Level 0. A Grade 3 student explained the center 
drawing in Figure 5 as, “A stick person. Probably be trees. Blowing a little bit. Probably 
be like a hot day with a little bit of a breeze,” whereas a Grade 5 student drew the weather 
map on the right of Figure 5, describing it in the following terms:  

 
Student: [draws a square] So you may have a map of Tasmania … Hobart is here; 

Swansea is here; Strahan is here and Launceston is there. [puts dots on page] 
You may say that Hobart is 11 and Strahan may be 15 and Launceston may be 
20 and Swansea may be 13.  
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Figure 5. Static weather pictures (Level 0) 

 
The two representations in Figure 6 indicate variation from season to season or for 
weather. These responses are considered to be at Level 1. 

 

 
 

 
Figure 6. Variation shown in weather pictures (Level 1) 

 
Also at Level 1, quite a few students could draw a framework for dealing with the task, 
indicating that they were attempting to show variation, but then had little idea of how to 
organize the story they wanted to tell. A start is shown in Figure 7. Explanations of some 
of the attempts to record values were difficult to follow and, although suggesting 
variation, there was no link to any expectation or trend. An example is given on the right 
of Figure 7.   

 

 

 

S: That’s start, oh well beginning 
and the end [writes on sheet] 

I: So you have got the beginning of 
the month and the end of the 
month. Is that what you are 
doing? 

S: Yes. Start off with … so I would 
do like start with the highest … 
[writes] 

I: So what are you putting in 
there? You are doing a table? 

S: Yes. Like 29oC is the highest the 
start of January and the end 
would be about 30. 

 
Figure 7. Frameworks to indicate variation but no data or a few data values (Level 1) 

 



43 
 

Two types of graphs were employed to begin to structure the display of variation in 
the temperatures at Level 2. Some suggested a frequency approach for various 
temperatures, as shown in Figure 8, choosing various temperatures, apparently randomly, 
for reporting. The student who drew the representation on the left for example said, “That 
[first column] shows that there’s 4 days which bring 17.” Others were based on time 
throughout the year. These were more likely to display a trend in variation, as shown in 
Figure 9, although some did not progress far enough to do so.  

 

 
 

 
Figure 8. Frequency graphs (Level 2) 

 

 
Figure 9. Beginnings of temperature graphs (Level 2) 

 
At Level 3 the graphs showing seasonal change were represented variously as 

continuous lines, vertical lines for short periods, line graphs, and bar graphs for months or 
seasons. Examples showing two methods of display, along with the students’ 
explanations, are given in Figure 10. These responses reflected the intuitive expectation 
of the weather context. 

Although there was mention of seasonal difference and change in the extracts 
accompanying the graphs in Figure 10, there was no discussion of daily variation when 
the graphs were drawn. Two examples that include short term variation as well as 
seasonal expectation are shown in Figure 11. These are judged to be Level 4 responses in 
the ability to focus on both variation and expectation. 
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I: So if those are the averages for the months – 
now can you tell me why they are going up 
and down a bit? 

S: Colder and hotter. 
I: OK – so where’s the coldest part of the year? 
S: In the middle [points to graph]. 
I: Sort of in the middle there, somewhere. 
I: And it gets warmer toward the end. 
S: Yes, Yes.  

 S: I think I will have a little line graph.  
I: Can you explain it to me.  
S: Well January is usually the hottest month and 

so the average what the temperature is.  
I: The average of the temperature and that 

[graph] represents that for the month. 
S: Yes each cross. 
I: And why does it go down? 
S: Because in the middle of winter it is generally 

colder than it is in the middle of summer.  
 

Figure 10. Graphs with seasonal variation (Level 3) 
 

 

I: What are each of these lines here? 
S: They are just a–throughout the–this is so you 

get a view of all the different temperatures that 
it can range from and just like it might be up, it 
might be a hot day one day and it might start 
going colder and it might get hot again and 
then as it goes down. It is going to start getting 
colder around June and July and then it is 
going to start coming back up [points to 
graph]. 

I: What does each line represent? 
S: A week. 

 

I: So what have you done there? 
S: It’s the highest in January, February, and 

December cause that’s the middle of summer... 
The coldest would be around here in winter. In 
around these sections, it’s around middling. 

I: It’s interesting you’ve got May a little bit 
higher here… 

S: Yea, it could change. There’d be a lucky day 
sometimes. It could just go up over. 

I: So are these temperatures, are they what, 
maximums, or averages or…? 

S: Yeah, maximum averages.  
 

Figure 11. Temperature graphs with seasonal expectation and daily variation (Level 4) 
 
Table 5 summarizes the levels of response for each grade for the WEATHER task for 

the 70 students who responded in the interviews. For this sample of students only two 
Grade 7 students, whose responses are shown in Figure 11, reached Level 4 in 
appreciating both expectation and variation in their responses. 
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Table 5. Summary of levels by grade for the WEATHER protocol (n = 70) 
 
 Grade 
 P 3 5 7 9 
Level 0 4 6 2 0 0 
Level 1 0 8 7 3 0 
Level 2 0 4 7 9 8 
Level 3 0 0 2 1 7 
Level 4 0 0 0 2 0 
Total 4 18 18 15 15 

 
6.3. LOLLIES 

 
The complete interview for the LOLLIES task, as seen in Appendix C, provides the 

background for the question relating to imagining the outcomes of 40 trials where 10 
lollies are drawn each time (with replacement) and the number of reds counted. After an 
initial request to draw a graph with no support provided, a blank set of axes was provided 
to students who did not initially produce a distribution of outcomes centered about five to 
help them think about distributions. The axes did not assist some students. The levels of 
response for the initial representations are presented first, followed by those for students 
shown axes. 

Similar to the WEATHER task, Figure 12 shows how some younger students 
interpreted the task by sketching the context for the drawing of lollies from a container. 
These are examples of Level 0 responses. A Grade 3 student explained the representation 
in the center of Figure 12 as follows, pointing to each part of the drawing: 

 
Student: Well they are 4 tables and they are the boxes with the lollies in them and they 

are two sheets of paper on each row so they can write down their answers and 
that’s just a person who watches, sits there and collects the pieces of paper 
from each one. And then there’s a row of 10 people [vertical lines]. 

 

  
 

Figure 12. Sketches of contexts for drawing lollies (Level 0) 
 
Other students across the grades initially provided numerical values for the outcomes. 
Responses suggesting individual values, rather than enough to indicate some variation, 
are shown in Figure 13 and are also assigned Level 0. 

 

 
 

Figure 13. Individual outcomes from draws (Level 0) 



46 
 

Responses explicitly suggesting variation are shown in Figure 14. A Grade 5 student 
explained the table on the right of Figure 14, as “Well it isn’t exactly forty people, there 
was like a group and they each wrote down their answers in a line across the top.” These 
responses are placed at Level 1. 

 

 
 

 
Figure 14. Multiple outcomes from draws (Level 1) 

 
The representing of outcomes for the 40 draws in a time series format was used by 

some students and often they were stopped from completing all 40 due to time constraints 
in the interview. The spread of the suggested number of reds was often quite large and 
occasionally very small. Two examples are shown in Figure 15 (both from Grade 7); 
these representations are placed at Level 2. 

 

 

 

 

 
Figure 15. Time-series-like graphs (Level 2) 

 
Some graphs of the time-series type showed a realistic degree of variation about a 

middle value, as do the two in Figure 16 by Grade 3 and Grade 9 students, with the 
accompanying explanations. These were judged Level 3 in appreciation of both variation 
and an intuitive notion of center.  

Without axes being provided, only four students produced a prototype of a typical 
frequency distribution. These responses were judged to be at Level 4 and are all shown in 
Figure 17. 
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S: How many reds they have got. 
I: So that is a person? Each one of these 

columns is a person is it? 
S: Yes. And the coloring in is how many 

reds they got. 
I: Out of 10. 
S: This is like the end [sheet]. 
I: So that person got 1 red so far. The 

first person gets about? 
S: Five 
I: Next person? 
S: Four.  
I: Do one more yeah … Yes you have 

got the right idea. I can see what you 
mean by showing it. So you would do 
that like that for 40 people though 
wouldn’t you. So you think they all 
would get around what? 

S: Around 6 and 5, around that, 6, 5, 4 
and 7.  

S: I drew a graph and they had the 
number of reds up the sides. The 
students along the bottom. And I 
drew a line going around 5, it goes 
up to 6 and down to 4 sometimes. 

 
Figure 16. Time-series-like graphs with appreciation of center (Level 3) 

 

 

  
 

Figure 17. Frequency distribution graphs (Level 4) 



48 
 

Table 6 shows the levels of response for each grade for the initial representations 
drawn for the LOLLIES protocol. Young students had some difficulty with appreciating 
the task in its original form. Only two graphs produced by Grade 7 students appeared to 
represent expectation to the exclusion of variation in the initial graph. The representations 
and the students’ explanations are shown in Figure 18. These used an area model for 
probability and were judged Level 0 with respect to this model. They were the only two 
responses initially to represent expectation rather than variation, the reverse to the 
hypothesis of this study. It may be that classroom instruction influenced these 
representations as the two students were from the same class. 

 
Table 6. Summary of initial levels by grade for the LOLLIES protocol (n = 73) 

 
 Grade 
 P 3 5 7 9 
Level 0 4 14   7   4   2 
Level 1 3   3   6   3   4 
Level 2 0   0   3   7   5 
Level 3 0   1   0   0   3 
Level 4 0   0   2   1   1 
Total 7 18 18 15 15 

 

 

 

S: Drawing about [outline of a rectangle] … drawing like a 
space just like drawing a square [draws a rectangle] – it is 
not really square. 

I: That’s all right, just a sketch. 
S: And probably about this much of it red and this much 

[yellow] and green. 
I: Now what does this [left section] represent? 
S: The red lollies. Probably about two thirds. 
I: About two thirds of what would come out would be red. 

[nods] And about how much yellow and green? 
S: Actually I was trying to make that – they would probably be 

a little bit less than a quarter. 
I: A little bit less than a quarter. 
S: Yes. 
I: For each of them or together? 
S: For each of them I think.

 

 

S: Oh, well they could do it in a pie graph or something and 
have the reds and then the other section is whatever else. 

I: So the reds would be … right, OK. Would it be one pie graph 
for the whole class do you think? 

S: [pause] Yes could be. 
I: Do you want to do me a sketch of what you think it might 

look like. 
S: [draws pie graph]. There’s a bit more than half. 
I: Do you think that would be the reds? 
S: Yes.  

 
Figure 18. Graphs representing expectation only (Level 0) 

 
The four students who drew the graphs in Figure 17 were not presented with the axes 

format as they had produced an equivalent form on their own. Some other students were 
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not presented with the graph format with axes because of confusion with the task, time 
constraints, or perceived lagging interest in the protocol.  

Fifty-four students (all Prep, 13 Grade 3 and 9, 11 Grade 5, and 10 Grade 7) who 
produced lower level initial graphs were shown the graph format with axes. The Prep 
students were given a complete “boxed” grid where they could color in boxes if they 
desired. Of the 54 students, 3 Prep, 10 Grade 3, 8 Grade 5, 9 Grade 7 and 8 Grade 9 
improved their levels of response. Only one student in each of Grades 3, 7, and 9 
produced a response using the axes that could not be deciphered and was assigned a 
Level 0 category, when a higher level response had been produced earlier. The levels of 
response by grade using the axes are shown in Table 7. 

 
Table 7. Summary of levels by grade for the LOLLIES protocol with axes 

provided (n = 54) 
 

 Grade 
 P 3 5 7 9 
Level 0 1 2 0 1 1 
Level 1 5 2 1 0 0 
Level 2 1 6 10 1 3 
Level 3 0 3 0 6 7 
Level 4 0 0 0 2 2 
Total 7 13 11 10 13 

 
Using the axes provided, six students in Grade 3 and eight students in Grade 5 

improved from Level 0 or 1 to Level 2. Some graphs took into account the total of 40 
people but others ignored this aspect of frequency. The graphs shown in Figure 19 show 
variation but not expectation in the center. Similarly 2 Grade 3, 6 Grade 7, and 5 Grade 9 
students improved their responses to Level 3 with the axes, by indicating an expectation 
for values around 5. Two of these are shown in Figure 20. 

Two students in each of Grade 7 and Grade 9 improved their responses to Level 4 
when presented with axes. These graphs show an appropriate shape for the distribution of 
outcomes except that the variation is too great and the responses ignore the values on the 
vertical axis. Two are shown in Figure 21, the first apparently attempting to record the 40 
outcomes. A few other students produced distributions that were centered on values 
greater than 5. These, because they acknowledged a center, although not the appropriate 
one, were allocated to Level 3. 

 
  

 
Figure 19. Frequency graphs with axes (Level 2) 
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Figure 20. Frequency graphs with axes and a central expectation (Level 3) 

 

  
 

Figure 21. Frequency distributions with axes (Level 4) 
 

6.4. SUMMARY 
 
A summary of levels of response across the three tasks is given in Table 8. The 

difference in complexity of the tasks means that it is inappropriate to equate performance 
across tasks. What is of interest is the similarity in structure in the observed 
representations created by students. On all three tasks five hierarchical levels of 
sophistication in representing variation are seen, with expectation being acknowledged 
and represented at higher levels. There were only two instances, for the LOLLIES task, 
where students appeared to represent expectation in terms of probability, rather than 
variation. This may be associated with classroom instruction. 

The trend for higher level performance with increasing grade likely reflects 
experiences in the classroom with ideas of average, probability, and graphing. An 
appreciation of variation in these contexts, however, appears to be established for most 
students by the middle years. 

 
7. DISCUSSION 

 
7.1. VARIATION, EXPECTATION, AND DISTRIBUTION 

 
What issues are involved when distributions are being judged in relation to the 

appropriateness of the variation and expectation displayed? In the light of the growing 
interest in variation in recent years, Shaughnessy (2007) suggests eight different aspects 
of variation that arise in various statistical contexts. Most of these can be observed in 
graphical representations: (i) variation in particular values such as outliers, (ii) variation 
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over time, (iii) variation over an entire range, (iv) variation within a likely range, (v) 
variation from a fixed value such as a mean, (vi) variation in sums of residuals, (vii) 
variation in co-variation or association, and (viii) variation as distribution. Aspects (vi) 
and (vii) are beyond the scope of this study but (viii) is of interest in the sense of the 
creation of a distribution that displays the variation inherent in the creator’s mind. 
Shaughnessy’s description of (viii) focuses on variation “between or among a set of 
distributions” (p. 985), which goes one step further than the notion of variation inherent 
in a single distribution as observed in this study. Expectation fits into Shaughnessy’s list 
at several places as a counter point to the concept of variation. Certainly expectation is a 
determinant of the “likely range” in aspect (iv) and the mean, or other fixed values such 
as proportion of red lollies, in aspect (v). It also underlies the last three aspects. It seems 
clear that different kinds of tasks, as presented here, require acknowledgement of 
different aspects of variation. 

For the BOOKS task, the variation is present in the given data values and the interest 
is in how students choose to represent this. In some sense the lower levels of response 
observed for this task fall outside of Shaughnessy’s (2007) categories. The appreciation 
of individual values, however, points to an initial requirement of representing variation. 
The appreciation of the entire range of values was shown by a few students who 
mentioned it in the context of predicting how many books the new student might have 
read. Aspect (v), involving an appreciation of center, comes into play in some of the 
predictions and responses that acknowledge uncertainty in the prediction and appear to 
link the expectation with variation. Although the more sophisticated presentations in 
Figure 4 appear to satisfy statistical norms, the earlier representations are important in 
demonstrating the progression made by students in understanding the nature of the task. 
If progressions are recognized it should be easier for teachers to assist students in moving 
from less appropriate to more appropriate representations. 

With the WEATHER and LOLLIES representations, students have a more complex 
task in representing variation because it is not presented to them in explicit data values. 
Only an expected value is presented at the start. An appreciation of variation in the 
context hence becomes important when students draw their graphs. For these two tasks 
students all seem to appreciate that the maximum temperature will not be the same every 
day and that the number of red lollies drawn from the container will not be the same 
every time. The prediction of six values or of a distribution for maximum temperature or 
number of reds, always shows variation, although sometimes it is wider than appropriate. 
The most appropriate graphs in a statistical sense show both a distribution, representing 
seasonal trend in maximum temperatures or likelihood of obtaining red lollies, and 
“random” variation about the distribution (see Figures 11 and 17). These two tasks 
certainly illustrate the first four of Shaughnessy’s (2007) aspects of variation. Some 
responses include unusual values; some show variation in time for the weather or in 
sequential student draws for the lollies; some indicate variation over an entire range, 
particularly for the lollies task but also sometimes for temperatures; and some show 
appreciation of a limited likely range for both temperatures and numbers of lollies drawn. 
Although it may be considered implicit, the graphical representations that vary about a 
value of 17oC on the vertical axis or peak at 5 red lollies, are showing an appreciation for 
Shaughnessy’s aspect (v). There is also the additional aspect (ix) which reflects the 
contextual model that produces the distribution represented: the seasonal trends in 
temperature and the theoretical sampling distribution for the lollie draws. Again there 
appear to be several steps or stages in students’ increasing appreciation of the variation 
and its link to expectation in the context of the overall tasks. An understanding of these  



52 
 

Table 8. Percent of responses for each task at each hierarchical level 
     
 BOOKS WEATHER LOLLIES (initial) LOLLIES (given axes) 
Grade P 3 5 7 9 P 3 5 7 9 P 3 5 7 9 P 3 5 7 9 
Idiosyncratic 14 50 25 7 12 100 33 11 0 0 57 78 39 27 13 14 15 0 10 8 
Unistructured 
Variation 

43 17 37 7 12 0 39 39 20 0 43 17 33 20 27 71 15 9 0 0 

Variation shown 
by value 

43 33 37 36 25 0 22 39 60 53 0 0 17 47 33 14 46 91 10 23 

Initial 
acknowledgement 
of expectation 

0 0 0 29 25 0 0 11 7 47 0 6 0 0 20 0 23 0 60 54 

Integration of 
expectation and 
variation 

0 0 0 21 25 0 0 0 13 0 0 0 11 7 7 0 0 0 20 15 

n 7 6 8 14 8 4 18 18 15 15 7 18 18 15 15 7 13 11 10 13 
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will help teachers plan interventions to assist students in progressing to higher levels of 
representation and explanation. 

Although the production of graphical representations should take place within the 
larger setting of a complete statistical investigation, for example as described by Chick 
and Watson (2001), Lehrer and Romberg (1996), Petrosino et al. (2003) and Friel et al. 
(2006), studying the products of such investigations is likely to provide insight into 
students’ thinking during the process. These are particularly relevant to the inferences 
drawn. As well, issues related to the context within which a task is set are important. Are 
students more familiar with the weather than with pulling lollies unseen from a container? 
Is the pictograph task too elementary to interest older students? The three tasks were 
chosen specifically to provide both a range of complexity and data based on two 
processes: scientific measurement and artificial probability sampling. The use of 
contextual knowledge was seen most often in the WEATHER protocol, where students 
told of their experiences of Hobart’s weather (Watson & Kelly, 2005); but also younger 
students used their contextual knowledge of reading to suggest imaginary reasons why 
Paul or Mary might have read a suggested number of books. In the BOOKS protocol, 
some students stated assumptions of context that could underlie their prediction for Paul 
and Mary. It is likely that it was limited contextual experience with pulling lollies from 
containers that contributed to the wider than realistic distributions drawn by students (e.g., 
Figure 21). The issue of the influence of contextual knowledge on students’ inferences in 
data handling situations is beginning to attract research attention (e.g., Langrall, Nisbett, 
& Mooney, 2006; Mooney, Langrall, & Nisbet, 2006) and should be expanded to include 
the attention paid to its influence on variation and expectation in the creation of graphical 
representations. 

The use of the term “distribution” in the title reflects the statistical perspective in 
relation to what is expected by the time students move into senior secondary study. It is 
unlikely that students will use the word before then. They will however hopefully draw 
many graphs that show appropriate variation associated with the contexts of tasks set. If 
they learn the importance of the words “variation” and “expectation,” this will be an 
important part of the vocabulary for their later statistical lives. 

 
7.2. LIMITATIONS 

 
Some of the limitations of the study result from combining data sets for tasks that 

were not all completed by the same students. Although it is possible to compare and 
contrast representations by the students who completed the LOLLIES and WEATHER 
tasks, it has not been done for this paper (see Watson, Callingham, & Kelly, 2007). 
Although some students explained well their thinking while creating representations 
during the interviews, others said very little. It is possible that further probing might have 
produced more complete explanations.  

It may be considered that the questions in the protocols, particularly the WEATHER 
and LOLLIES tasks, encouraged a consideration of variation. Each set up the potential for 
comparing varied data values against an initial expectation. In the WEATHER protocol, 
this was provided by the statement about the average daily maximum temperature in 
Hobart being 17oC. In the LOLLIES protocol, expectation was provided in the statement 
that the bowl of lollies contained 50 red, 20 yellow, and 30 green lollies. The first was a 
more straightforward and familiar statement of expectation in context for most students. 
In both cases, however, students were presented with both concepts, expectation and 
variation, at the start of the protocol and hence had the opportunity to build both into their 
responses. In the BOOKS task, the opportunity for display of understanding of the two 
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concepts appeared as pictographs were discussed or predictions requested. Although 
creating pictographs that displayed variation, some students did not recognize this as a 
characteristic that could be discussed. In other protocols presented to these students, not 
associated with graphical representations, expectation was the feature of the prompting 
questions (Watson & Kelly, 2004b, 2006) not a contextual referent as in the WEATHER 
and LOLLIES protocols. 

 
7.3. IMPLICATIONS FOR RESEARCH AND THE CLASSROOM 

 
This study adds to the growing body of evidence about the increased complexity of 

appreciation of variation and expectation in statistical contexts throughout the school 
years. In two of the contexts presented here, specific data values were not presented to 
students; in the other context a very small data set was presented. It may hence be claimed 
that the contexts were not realistic and students were not encouraged to use knowledge 
they may have learned in the classroom to deal with quantitative data sets. Whether this 
may have influenced the apparent delay in demonstration of ideas associated with 
expectation is unknown. The two contexts that did not contain specific data sets, however, 
may represent scenarios more likely to be encountered in out-of-school situations. They 
may perhaps present evidence of how likely or otherwise it is for students to transfer their 
knowledge to less specifically data-based environments.  

In a related study involving six protocols, including the WEATHER and LOLLIES 
tasks but also others more specifically aimed at probability as expectation, Watson et al. 
(2007) observed a parallel development of concepts related to variation and expectation. 
Based on a Rasch analysis of hierarchically coded responses, six levels were identified, 
ranging from no acknowledging of either variation or expectation to an establishing of 
links between the two in comparative settings employing proportional reasoning. It 
appears that the use of more tasks, some specifically addressing expectation, prompts 
students to display their developing appreciation earlier. In the current study the tasks, 
especially the BOOKS protocol, were quite open-ended, allowing students to display 
understanding they felt to be relevant rather than to be prompted to recall averages or 
probabilities. 

This study holds open the question of the natural development of ideas of variation 
and expectation, free of teaching intervention or specific prompting during interviews. It 
appears to support the view that ideas of variation develop naturally before those of 
expectation. Watson (2005) produced a similar argument based on descriptive anecdotal 
examples and further suggested that the school curriculum does not reflect this 
development. It may be that currently the curriculum does not support students’ natural 
inclination to focus on variation and instead forces attention on expectation in the form of 
averages and probabilities first. It would appear that if it is desired for students to develop 
both concepts together then the curriculum needs to reflect the two ideas and their 
interaction from the start. It is likely that David Moore (1990, 1997) would support this 
revision in thinking about the curriculum given his view of variation as the foundation 
concept underpinning the field of statistics. 

The tasks used in this study illustrate a wide range of contexts within which students 
can be asked to create representations of distributions. The importance of considering 
both data sets and data-free scenarios is seen, as well as the importance of choosing 
contexts where students have some intuition about the variation present. In school settings 
it may be possible to combine such graphing tasks with other tasks in science, social 
science, or health where variation appears in the topic being studied. The consideration of 
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both subject matter understanding and the ability to create distributions, leads to the 
implications for assessment. 

If a hierarchical progression of observed levels of graph production can be agreed 
upon, for example as suggested in Table 3, it will then be possible to create rubrics for 
assessment based upon them. These can then be combined with other rubrics of subject 
matter performance for authentic cross-disciplinary assessment, as desired in many of 
today’s schools. The results of this study may not show that students get close to the 
formal idea of distribution by Grade 9 but they indicate what a complex process is 
involved. The outcomes suggest that in making progress much explicit classroom 
discussion is required along the way. 
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APPENDIX A: INTERVIEW PROTOCOL FOR THE BOOKS TASK 
 

  

Sample of cards used as materials for representation. 
 

We have some cards here, to represent some children, and some cards for the books they have 
read. 

(Show information sheet: Anne read 4 books, and Danny read 1, and Lisa read 6, Terry read 3.) 
Now suppose that Anne read 4 books, and Danny read 1, and Lisa read 6, Terry read 3. 
Representing (Part 1) 
Can you use the cards to show the information? 
Why did you do it that way? 
Interpreting (Part 1) 
If someone came into the room, what could they tell by looking at your picture? 
Representing (Part 2) 
Suppose Andrew read 5 books. Can you show that Andrew read 5 books? 
Suppose Jane read 4 books. Can you show that Jane read 4 books? 
Now, suppose Ian hasn't read any books. Can you show that Ian hasn't read any books? 
Now, suppose everyone went to the library and read one more book each. Can you change your 
picture to show that they all read one more book each? 
Interpreting (Part 2) 
If someone came into the room, what could they tell by looking at your picture now? 
Can you tell who likes reading the most? How? 
Can you tell how many books they've read all together? 
Who do you think is most likely to want a book for Christmas? Why do you think that? 
Predicting 
Suppose Paul came along, and we didn't know how many books he had read. What would be you
best estimate/prediction/guess of how many books he might have read? 
Now suppose Mary came along. What would be your best estimate/prediction/guess of how 
many books she might have read? 
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APPENDIX B: INTERVIEW PROTOCOL FOR THE WEATHER TASK 
 

1. Some students watched the news every night for a year, and recorded the daily maximum 
temperature in Hobart. They found that the average maximum temperature in Hobart was 17°C. 

a) What does this tell us about the temperature in Hobart? 
b) Do you think all the days had a maximum of 17°C? - Why or why not? 
c) (What do you think the maximum temperature in Hobart might be for 6 different days in 

the year?)* ______,  ______,  ______,  ______,  ______,  ______ 
d) Why did you make these choices? 

 
e) For the whole year, what do you think the highest and lowest daily maximum 

temperature in Hobart would be? highest maximum _____ lowest maximum ____ 
f) For the month of January, what do you think the highest and lowest daily maximum 

temperature in Hobart would be? highest maximum _____ lowest maximum ____ 
g) For the month of July, what do you think the highest and lowest daily maximum 

temperature in Hobart would be? highest maximum _____  lowest maximum ____ 
2. How would you describe the temperature for Hobart over a year in a graph? 
 
3. Here are some ideas from other students. What do you think of them? 
a) 

   
 
b) 
 

   
 
c) 
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APPENDIX C: INTERVIEW PROTOCOL FOR THE LOLLIES TASK 
      

1. Suppose you have a container with 100 lollies in it. 50 are red, 20 are yellow, and 30 are 
green. The lollies are all mixed up in the container. You pull out 10 lollies. 

a) How many reds do you expect to get? 
b) Suppose you did this several times. Do you think this many would come out every time? 

Why do you think this? 
c) How many reds would surprise you? Why do you think this? 
 

2. Suppose six of you do this experiment. 

a) What do you think is likely to occur for the numbers of red lollies that are written down? 
______,  ______,  ______,  ______,  ______,  ______  Why do you think this? 
 
3. Look at these possibilities that some students have written down for the numbers they thought 

likely. 
(a) 5,9,7,6,8,7     (b) 3,7,5,8,5,4     (c) 5,5,5,5,5,5     (d) 2,3,4,3,4,4 
(e) 7,7,7,7,7,7     (f) 3,0,9,2,8,5     (g) 10,10,10,10,10,10 

Which one of these lists do you think best describes what might happen? Why do you think this? 
 
4. Suppose that 6 students did the experiment. What do you think the numbers will most likely 

go from and to? 
From __________ (lowest) to __________ (highest) number of reds. Why do you think this? 
Now try it for yourself: ______,  ______,  ______,  ______,  ______,  ______ 
Given the results, do you want to change any of your previous answers?
 

5. Suppose that 40 students pulled out 10 lollies from the container, wrote down the number of 
reds, put them back, mixed them up. 

a) Can you show what the number of reds look like in this case? (Use the blank space 
below) 

b) Now use the graph below to show what the number of reds might look like for the 40 
students. 
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