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ABSTRACT 

 

This research presents the results of the implementation of a model-eliciting activity called 

Brickyards, designed to promote the learning of the binomial distribution. The theoretical 

framework used was the Models and Modeling Perspective, and the participants were 

undergraduate students enrolled in a probability and statistics course of the Bachelor Civil 

Engineering Program at the University of Guadalajara, Mexico. The activity was refined during 

three semesters, and here we report the models generated by the students in the fourth 

implementation. In the first stage of the activity of this implementation, students proposed wrong 

solutions, which were based on ideas of proportionality and linear thinking. The activity was 

designed to inhibit these types of solutions and to encourage students to realize when they are 

dealing with a random phenomenon, and that they need a probability distribution to solve the 

activity. The students used RStudio software to calculate probabilities. 

 

Keywords: Statistics education research; Linear thinking; Proportional model; Random model; 

Probabilistic model 

 

1. INTRODUCTION 

 

Statistics is gaining importance and social recognition as a fundamental tool for science, economics, 

and politics. Also, quantitative information is omnipresent in media and in the everyday lives of citizens 

worldwide (Ben-Zvi & Makar, 2016). Over the past few decades, statistics have become an increasingly 

essential tool for companies to control and improve the quality of their products and services. This has 

also led to the promotion of evidence-based decision-making as one of the key principles of quality 

management, allowing companies to make informed decisions based on data (International 

Organization for Standardization, 2015). In these tasks, probability distributions become the 

mathematical tool that facilitates the identification of patterns of variation and the characterization of 

the uncertainty (randomness) inherent in the data. 

Accounting for variability with the use of distributions is the key in the analysis of data (Franklin 

et al., 2005). The understanding of randomness, therefore, is considered a statistical competence that a 

citizen must have today, to understand the behavior of random samples and be able to interpret a margin 

of sampling error (Franklin et al., 2005). This implies that attention should be paid to the development 

of statistical competence to understand sample variation in the teaching of probability and statistics. 

Additionally, this makes this subject increasingly relevant in the school curriculum (Franklin et al., 

2005). Its teaching, however, faces several obstacles, one of them is that problems that are random are 
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not identified as such by the students, who in most cases try to analyze and solve them with proportional 

or linear reasoning (Dooren et al., 2003). 

The illusion of linearity of phenomena leads to a series of erroneous concepts and ideas in 

mathematics and probability (Dooren et al., 2003), such as the misconception that random samples 

accurately represent the characteristics of the population: “People have erroneous intuitions about the 

laws of chance. In particular, they regard a sample randomly drawn from a population as highly 

representative, that is, similar to the population in all essential characteristic” (Tversky & Kahneman 

1971, p. 105). This misconception of random samples leads to interpreting the sample statistics, such 

as mean and proportion, as if they were equal to their population counterparts (Gutiérrez, 2020). This 

limits the student’s ability to visualize the whole variability of the random phenomenon under study, 

and they only focus on the values with the highest probability. 

Part of the problem is that teaching probability distributions often fails to emphasize the context in 

which problems arise, focusing instead on mathematical procedures and calculations. As a result, 

students are unable to identify which problems in their environment or profession can be modeled using 

probability distributions. Furthermore, it is not emphasized that probability distributions are the models 

of population measurements, and that probability seeks to quantify uncertainty, which is inherent to 

almost all phenomena (Franklin et al., 2005). 

To address this teaching/learning problem, different alternatives have been proposed, for example, 

the use of educational software to analyze and simulate different random phenomena (Pfannkuch et al., 

2018) and the use of problems “that touch the lives of students and are linked to their specific problems 

in the real world” (Pfannkuch et al., 2018, p. 1115). There are several reports that analyze the teaching 

of probability distributions through activities relevant to students, which make use of simulators to 

facilitate the visualization of random phenomena related to distributions such as normal, Poisson, or 

binomial (Batanero et al., 2001; Bill et al., 2009; Budgett & Pfannkuch, 2018). It is necessary, however, 

to generate more proposals of this type, for example, using problems close to the professional interest 

of students that allow them “to understand the behavior of a real-world system and, consequently, to 

develop a deeper contextual knowledge and an understanding of the real-world situation” (Pfannkuch 

et al., 2018, p. 1115). 

This report presents the solution paths of students of an undergraduate level course when they tried 

to solve a problem in the civil engineering context. The problem involves the use of the binomial 

distribution and was posed based on criteria taken from the Models and Modeling Perspective ([MMP]; 

Lesh, 2010; Lesh & Doerr, 2003; Lesh et al., 2000). The solution strategy is organized in three stages, 

starting with individual work, then working in teams, and concluding with a plenary session. Some 

teams relied on RStudio software (https://www.rstudio.com) for some calculations and decisions. 

The question to be answered in this study is:  

What are the models a group of civil engineering students generate when they try to solve a 

problem related to real life, where binomial distribution is required to model the random 

phenomenon involved? 

For this purpose, a Model Eliciting Activity (MEA) was designed and applied from the MMP, which is 

related to the field of study of civil engineering and is close to the students’ reality as advised by Lesh 

(2010). The activity also allowed for the consideration of the use of technology to facilitate the solution. 

The design of the MEA was refined during three semesters of a probability and statistics course of the 

Bachelor Civil Engineering Program at the University of Guadalajara, Mexico. The fourth 

implementation is reported here, and it was carried out in the first semester of 2021. This research report 

contributes to the study of the learning process of random phenomena. 

 

2. BACKGROUND 

 

As Florensa et al. (2020) pointed out, in the last two decades there has been a substantial increase 

in the number of studies focused on modeling perspectives, employing different approaches. This trend 

is also manifest in the field of modeling problems associated with probability and statistics. It includes 

research on the teaching and learning of random phenomena. This research emphasizes the execution 

of activities pertaining to real-world problems and the utilization of software that enables the simulation 

of these phenomena. 
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Different authors have made developments regarding the teaching and learning of statistics in the 

framework of the CATALST (Change Agents for Teaching & Learning Statistics) curriculum (e.g., 

Garfield et al. 2012; Noll et al., 2018). It was one of the first simulation-based introductory statistics 

curricula to be developed for radical change in introductory statistics courses (Justice et al., 2020). The 

CATALST curriculum “uses the ideas of chance and models, along with simulation and randomization-

based methods, to enable students to make and understand statistical inferences” (Garfield et al., 2012, 

p. 883). This curriculum combines several elements: simulation and randomization through 

TinkerPlots™ software and the transition to thinking about real problems. Garfield et al. (2012) reported 

that the CATALST program has been successful and indicate that over a four-year period it has been 

replicated 15 times at 10 different institutions.  

A continuation of the CATALST project was reported by Noll et al. (2018), who, through narrative, 

studied the development of statistical models created by students as they tried to solve a real-life 

problem with the support of TinkerPlots™ software to simulate data. Their results contribute to the 

conception of the curriculum in probability and statistics regarding the construction of statistical models 

through the analysis of the students’ narrative. 

Budgett and Pfannkuch (2018) indicated that simulations, properly designed, allow students to 

experience random phenomena: “For example, by simulating a Poisson process, it would be possible to 

make connections between the rate at which events occur, and the time that elapses between events” (p. 

1283). These authors accompanied their proposal with the design of a task that follows six principles. 

One of the principles is related to context and Budgett and Pfannkuch used “data relating to FIFA World 

Cup soccer tournaments … to promote student engagement” (p. 1284). They pointed out their proposal 

could support the understanding of randomness and the probabilistic process of the Poisson distribution. 

Regarding R, a programming language for statistical computing and graphics, more studies are 

needed to analyze its impact on the learning of probability distributions. On this topic, we found a study 

by Stemock and Kerns (2019), which compared R with SPSS. The study did not identify significant 

differences in terms of students’ opinion on the ease of use, impact on course quality, and 

recommendation for future use. Which is a positive aspect, since R has the advantage of being cost-

free. 

No studies were found at the undergraduate level on how students internalize the probability model 

for binomial distribution, so this is one of the main contributions of the present study. In addition, there 

is little literature on probability and statistics in the field of civil engineering at the undergraduate level. 

In relation to this, three classic textbooks of this discipline for engineers were reviewed (Devore, 2011; 

Hines et al., 2008; Walpole et al., 2012), and it was found that these books contain very few problems 

related to civil engineering. Furthermore, these textbooks emphasize the application of algorithms, and 

place much less emphasis on understanding and modeling the problems. Therefore, another contribution 

of this study is the design of a MEA, related to a problem in the context of civil engineering, to promote 

the learning of binomial distribution. 

 

3. MODELS AND MODELING PERSPECTIVE 

 

The theory that underpins this research encourages students to model a problem instead of focusing 

on the answers produced to solve it. The model is understood as the creation of: 

… conceptual systems (consisting of elements, relations, operations, and rules governing interactions) that 

are expressed using external notation systems, and that are used to construct, describe, or explain the 

behaviors of other system(s)—perhaps so that the other system can be manipulated or predicted 

intelligently. (Lesh & Doerr, 2003, p. 10) 

In order to develop these models, the starting point is choosing problematized situations that are close 

to the students’ reality. These situations can be real or appear to be real to provoke the need to create a 

mathematical model (Lesh et al., 2000; Noll & Kirin, 2017). 

Each individual generates their own models (conceptual systems) that enable them to explain and 

give meaning to specific situations (Lesh & Doerr, 2003). These models are created in constant 

confrontation with their previous knowledge, with the ideas of their peers and with the participation of 

teachers or coaches. This exchange of ideas leads to “building shared meanings and solutions to 

problems” (Noll et al., 2018, p. 1269). 
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MEAs are a design tool that MMP uses to enable the generation of models. These activities are 

“simulations of ‘real life’ in which students’ conceptual understandings can be directly documented and 

assessed” (Sevinc & Lesh, 2018, p. 302). The MEA enables the generation of models by recreating real 

problems that can be solved in a short time (90 min.). In addition, MEA creates conditions so these 

models can be “documented so as to provide a trail of evidence of learners’ changing ways of thinking” 

(Brady, 2018, p. 46). 

Lesh et al. (2000) pointed out that students have both school abilities and real-life abilities, and the 

two often function almost completely independently. Since these skills are not linked, the brain makes 

the necessary adaptations to work with the former in school situations and the latter in family and friend 

situations. Achieving the linking of both skills will allow school knowledge to remain and become part 

of the students’ daily life. MEAs are the bridge that favors the linking of these two abilities (school and 

real-life). Through engaging in the activity, students construct mathematical models that leave a trail of 

evidence for educators to better understand students thinking (Garfield et al., 2012). 

 

4. METHODOLOGY 

 

The MEA design was refined during three semesters in a probability and statistics course of the 

Bachelor Civil Engineering Program at the University of Guadalajara, Mexico. The process followed 

in the fourth implementation is detailed here, which was carried out in three stages, starting with 

individual work, then working in teams, and concluding with a plenary session. 

The models generated by the students when they addressed the problem posed in the MEA called 

Brickyards, were analyzed qualitatively. The activity involves the binomial distribution and was 

designed under the six principles proposed by Lesh and collaborators (2000):  

1) Construction of models—the way in which the activity is presented should provoke the need 

to look for a mathematical solution.  

2) Reality—the problem raised is real or could be real.  

3) Self-evaluation—allows the student to evaluate the proposed solutions for themselves.  

4) Documentation—explicitly reveals how students are thinking about possible solution paths.  

5) Shareable and reusable construction—the proposed model is easily modifiable and reusable in 

other situations.  

6)Effective prototype—students will remember the model when they encounter other structurally 

similar situations. 

The design of the MEA Brickyards starts from raising an important real problem, which refers to 

waste due to critical defects in the production of fired clay bricks for the construction of walls. This 

artisanal production is carried out by small companies, whose average percentage of waste is 7% 

(Instituto Nacional de Ecología y Cambio Climático, 2016). Based on this reality, an imaginary contest 

was conceived to encourage brickyards to reduce their waste (Figure 1). The requirement for a brickyard 

to participate in the contest is that it achieves less than 7% waste (which is the industry average in the 

state of Jalisco, Mexico). The winning factory will be the one that demonstrates the greatest waste 

reduction with respect to 7%. 

Deciding which companies meet the requirements and the winner of the imagined contest is not a 

simple problem. To make these decisions, it is necessary to rely on statistical sampling of the production 

of the participating companies. A scenario with different sample sizes and levels of defects is proposed 

in such a way that the decision is not obvious and encourages students to analyze the activity from a 

probabilistic basis (Table 1). The sample sizes were decided by assuming different company sizes and 

applying criteria from the Tables for Inspection by Attributes MIL-STD-105E (Gutiérrez, 2020). 
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Figure 1. MEA Brickyards online format [English translation]. 

 

Table 1. Sample sizes and defective bricks 

 

Brickyard Sample size Defective bricks Evaluation Sample waste (%) 

B1 200 10 Disqualified 5.00 

B2 215 7 Second place 3.30 

B3 315 13 Third place 4.10 

B4 323 16 Disqualified 4.90 

B5 500 22 First Place 4.40 

B6 898 49 Disqualified 5.50 
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Table 1 shows the data considered to choose the winning brickyards, as well as those that were 

disqualified for not achieving a waste below the state average (7%). The six sample sizes and the 

corresponding number of defective bricks are different, so the decision is not evident. On the 

assumption that students have a deep-rooted linear thinking, these data were chosen in such a way that 

for the decision analysis it was not sufficient to calculate the percentage of defective bricks in each 

manufacturer’s sample. Indeed, applying this percentage criterion, the decisions made by the contest 

organizers on the disqualified and winning brickmakers appear to be incorrect. This is detailed in Table 

1, which shows that brickyards B1, B4 and B6 were disqualified, even though all three have a sample 

waste of less than 7%. Also, the winning brickyard has a higher percentage waste (4.4%) than the second 

and third place (3.3% and 4.1% respectively). 

The activity emphasizes that the decisions shown in Table 1 were appropriate and that the goal is 

to show that the evaluators decided correctly. The idea is to encourage students to go beyond the use of 

percentages (proportional model), and to explore alternatives based on probability. The expectation is 

for them to analyze the effect of using different sample sizes on both variability and uncertainty. For 

this task the students could use RStudio software, as they had been trained in its use before participating 

in this research. 

The implementation of the activity was carried out in three stages. In each of them, the instruction 

was the same: showing that the contest organizers made the right decisions in both disqualifying and 

rewarding the brickyards (see sentences a and b at the end of Figure 1). The stages were as follows: 

1. Individual work: Writing the first individual solution ideas in an online blogspot. 

2. Teamwork: Sharing the individual solutions and generating a team solution proposal by 

consensus. 

3. Plenary session: Presenting each teams’ proposal. 

The analysis of the models constructed by the students was carried out based on the work developed 

by the students during the three previous stages. Release 8 of the Atlas.ti (https://atlasti.com/es) software 

was used for the analysis of the writings and the videos of the teamwork and the plenary activity. The 

videos were recorded with Google Meet. 

 

5. ANALYSIS OF RESULTS 

 

The most relevant aspects of the data obtained in the three stages in which the MEA Brickyards 

were resolved are presented in this section. 

 

5.1. INDIVIDUAL WORK STAGE 

 

In this stage, the students made the first approaches to try to justify or question the decisions of the 

contest evaluators. Thus, the first ideas related to percentages, the rule of three, and sample size 

emerged. This is shown below.  

 

Percentage and rule of three approaches. As mentioned in the methodology, the MEA Brickyards 

was designed to avoid the emergence of any proportional model. Even so, it appeared in this first stage. 

Figures 2 and 3 show quotations from the comments made by the students in the blogspot, which were 

assigned the code “percentage” and “sample” in Atlas.ti. Figure 2 shows that out of a total of 17 student 

comments, 13 used the sample percentages as if they were population parameters (the production of the 

brickyards). Two examples of this are the comments 29:1 and 29:7: 

 
29:1 disqualified brickyards [that] did not exceed 7% of waste, so they were unfairly disqualified. 

29:7 We can check by applying the rule of three, and they do not exceed 7% of waste, and checking 

the brickyards chosen as winners are poorly organized in their places. 

 

In this regard, Konold (1995) pointed out that when a model such as the percentage is internalized, the 

transition to the random model is not easy. 
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Figure 2. Comments made by students on the blogspot related to the percentage in the first stage 

of the MEA Brickyards. 

 

The idea of proportionality also emerged in the students’ arguments about the sample (Figure 3), 

when they proposed samples of the same size to achieve a fair contest: 

 
32:3 It would be necessary to have an equal sample size for all and thus know the brickyard with the 

lowest waste. 

32:4 We can see that the samples are very varied and in the case of the wastes they do not vary so 

much in the case of some, so I consider that the way to choose the first place was somewhat 

unfair. 

 

 
 

Figure 3. Comments made by students on the blogspot related to the sample size in the first stage 

of the MEA Brickyards. 
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5.2.  TEAMWORK STAGE 

 

For the team activities in the probability and statistics course, the class was organized into ten teams. 

Teams seven and nine did not participate in any activity of this unit, so in this part of the analysis the 

work of eight teams (T1, T2, ..., T6, T8 and T10) was reviewed.  

The analysis of this stage was based on the video recordings of the virtual meetings of each team 

and the first solution proposal of each team, which was presented in free format (Word or PowerPoint). 

The dialogues were analyzed in the Atlas.ti software and coded as follows: the letters TW to indicate 

teamwork, followed by a number indicating the team number and a letter to designate the participant 

(which is not related to the student’s name or surname to preserve their anonymity). For example, TW1J 

indicates a comment made in teamwork, in Team 1, by Student J. Regarding the analysis of the 

documents with the first solution proposal, the following coding was used: the letters FTW for the first 

printed version of the teamwork, followed by the team number. 

 

Ideas on percentage and proportionality. At the beginning of the teamwork, the teacher indicated 

that the simple value of the percentage of defective bricks in the samples (Table 1) did not solve the 

activity. Even so, the attempt to solve the activity based on percentages appeared in the dialogue of 

several teams. T1 recalculated the percentage of waste for each sample and corroborated that all the 

companies were below 7%, and they also realized that the third place in the contest had a lower 

percentage than the second place. Faced with this apparent contradiction, they questioned whether the 

activity had a trick. One student speculated, “There is something hidden in the reading, like a message 

to decipher or something like that” (TW1E). 

The preliminary analysis of T3 was related to the percentages. To explain the decisions about the 

disqualified sites, the team argued that there could only be three places. Therefore, the rest were 

disqualified. Their way of resolving the contradiction (third place lower percentage of waste than first 

place) was to ignore it. Another team that also began its analysis with the percentages was T10. When 

they identified the contradictions, they were blocked for a long time without being able to get anywhere. 

In turn, the first idea T4 explored was a relationship between the sample size and the number of 

defective bricks. “If you look at it, for every 20 bricks, one goes wrong. Almost all samples have like 

that score” (TW4J), to which their partner responded, “I think we are already following the thread of 

fate” (TW4O), giving continuity to the argument. The team reviewed the table again and returned to 

the initial idea of the percentage. “Check the table for the percentage, those that were disqualified are 

the ones with the highest percentage, the percentage closest to 7%” (TW4J). The idea concluded there, 

without corroboration. It appears that the initial ideas of these four teams (T1, T3, T4 and T10) were 

again about the percentages of the samples, seen as the identical reflection of the corresponding 

characteristic of the population. That is, without understanding the random characteristic of the samples 

(Tversky & Kahneman, 1971). 

It is noteworthy that when the teams found that they could not solve the disqualification and the 

award with the sample percentage, they looked for other solution paths. This is in agreement with Lesh 

et al. (2000), who noted that when students have the possibility of evaluating through the indications of 

the activity that they are not on the right track, they can look for other possible solutions.  

 

Trial-and-error approach with probability distributions. All the teams that started by trying to 

solve the problem with percentages, then changed and tried with probability distributions. For example, 

T1 wondered if the problem would be related to probability and mentioned that it could be with the 

binomial distribution, but the team do not go deeper into this option. Instead, they looked up the 

definition of random experiment, which had been seen in the previous unit of the course, but they could 

not relate it to the MEA Brickyards. 

Another approach followed by several teams was to use RStudio commands related to probability 

distributions. They incorporated the data from the activity, but more with a trial-and-error method than 

with a clear strategy. Thus, T2 and T6 tried to solve the activity with the hypergeometric distribution 

but observed that they did not have N (lot size or population from which the sample was taken); 

subsequently, they looked for another option. In one case, T2 confused the interpretation of the p 

parameter of the binomial distribution by associating it with the probability of obtaining good bricks, 

when it should have been related to the probability of obtaining a defective brick. This confusion is a 
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language problem, frequent with this distribution, since in the usual definition of this distribution, it is 

indicated that the parameter p represents the probability of the event of interest, called "success". In the 

application, the event of interest was defective bricks, and not good bricks, as it was interpreted by T2. 

Both teams (T2 and T6) left the hypergeometric distribution and chose the binomial distribution, as did 

T3, T4, and T10. Although they all took the path of using the binomial distribution, the way of 

approaching it was different as detailed below.  

T2 relied on RStudio to apply the binomial distribution. In this process they identified the sample 

size, but had problems identifying p, and instead used the waste percentage of the samples. For example, 

for brickyard B1, they used n = 200 and p = 0.05; but to plot the distribution they used the whole domain 

of the probability function (x = 0,1, 2, ..., 200), so that the most probable values of x are left in a small 

portion of the left side of the plot, giving the impression that the distribution has a very long right tail 

and they wondered why the plot had that shape (Figure 4). 

 

 
 

Figure 4. T2 using RStudio. 

 

One of the team members worked on his own and changed p = 0.05 to p = 0.07 (7% waste in 

Jalisco) and applied the inverse of the binomial distribution in RStudio, as qbinom(α, n, p), first with α 

= 0.05 and then α = 0.10. With this last value he obtained the values where x was expected to be 

(between 8 and 20) and he made the following interpretation: 

 
TW2S: What I can do is change here 0.5 and 0.95, let’s see, no, there is the eight, it is the 

minimum wow, I think that’s why. 
TW2C: What do you mean, 8 is the minimum? What? 
TW2S: Well, it says that it has to be 7%, right? Ah, well this one got 8%. 
TW2C: Aah, and that’s why it’s out. 

 

They interpreted the inverse of the binomial distribution result, qbinom(0.05, 200, 0.07) = 8, as a 

percentage and compared it with 7%, which was higher, so they considered that Brickyard 1 was 

disqualified. They were only able to perform the analysis for the first brickyard. Perhaps, if they had 

had the results of all the brickyards, they could have changed this interpretation. 

Teams T3 and T4 adopted a similar approach using the cumulative binomial distribution, where  

x = waste and p = 0.07 (Figure 5), but they could not relate the results to the disqualified brickyards 

(higher cumulative probability), nor to the awarded ones. This is an alternative solution to the activity, 

which could have been achieved by these teams. 
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Brickyard 1 
> x < - c(0:200) 
> pbinom(10,200,0.07) 
[1] 0.1661267 

Brickyard 3 
> x <- c(0:315) 
> pbinom(13,315,0.07) 
[1] 0.02329336 

Brickyard 5 
> x < - c(0:500) 
> pbinom(22,500,0.07) 
[1] 0.01051955 

Brickyard 2 
> x< - c(0:215) 
> pbinom(7,215,0.07) 
[1] 0.01472532 

Brickyard 4 
> x < - c(0:223) 
> pbinom(16,223,0.07) 
[1] 0.6060626 

Brickyard 6 
> x <- c(0:898) 
> pbinom(49,898,0.07) 
[1] 0.03666152 

 

Figure 5. Results obtained in RStudio with the cumulative binomial distribution with x = waste, 

FTW3. 

 

In contrast T6 used the binomial distribution and the sample proportion of waste of each brickyard 

as p. When they were asked why they used this value of p, they changed to 0.07 but confused the result 

of the binomial distribution with the average waste. As they could not reach a conclusion, they looked 

for another way, which was to calculate P(x = 1) in the six brickyards, as a way to “compensate” for 

different sample sizes. As a result, T6 obtained very small values for the brickyards with large sample 

sizes. They did not, however, interpret the values (Figure 6). 

 

 

 
 

Figure 6. RStudio results presented in FTW6 

 

Another team that used the inverse of the binomial distribution was the T10, with α = 0.025 and p 

= 0.07 and the sample size of each brickyard. They subtracted the sample waste (bricks with defects) 

from the value of qbinom(α, n, p), obtaining negative numbers for the disqualified brickyards. They 

complemented this analysis with a bar graph and explained, “Now we can see how the values have 

changed based on the binomial distribution and it is clearly seen why Brickyards B2, B3 and B5 have 

obtained the first three places” (FWT10, p. 11). They did not specify, however, that those with larger 

bars were the ones disqualified (Figure 7). 

 

 
 

Figure 7. Bar chart to compare qbinom(α, n, p) and sample waste for each brickyard, FTW10. 

 

  

Waste 
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In summary, the teams that explored a probabilistic analysis in RStudio (T2, T3, T4, T6 & T10) 

were unable to arrive at a clear formulation of an explanatory model for the disqualification and 

rewarding of brickyards. They used the RStudio without a clear reason about the parameters to be used 

in the three functions of the binomial distribution: the probability function (dbinom), the cumulative 

(pbinom), and the inverse (qbinom). They were also unable to forcefully link the results with the MEA 

Brickyards. This difficulty of relating a problem with a distribution that can model it is something that 

happens frequently and not only happens to students, but also to experts. Garfield et al. (2012) indicated 

that when modeling random phenomena, no matter the level of experience of the modeler, everyone 

faces the conflict of identifying the appropriate model for each reality. 

 

Proportionality model or rule of three. To solve the problem of working with different sample 

sizes, some teams matched the sample sizes and adjusted the number of defective bricks proportionally, 

and thus could decide based on this adjusted value. This process overlooked the fact that the teams were 

working with samples, where such proportionality does not necessarily work. 

T5 expanded the sample size, n, to 1000 for all brickyards, and the expansion factor for each n was 

applied to the number of defective bricks in the sample for each case (Figure 8). We have called this 

approach the Sample Equalization Model. The justification given by this team was as follows:  

If we matched them all to a sample quantity such as one thousand, for example, we would see that those 

that were disqualified were with good reason since they have a brick waste of 50 or more, relative to 

those that were selected as winners. (TW5I). 

They concluded: 

Therefore, we can say that, although all the brickyards present a percentage lower than the 7% established 

to participate and not be disqualified, the decision of the organizers was taken in the right way, because, 

although the brickyards that were selected with the first, second and third place produce a higher amount 

than the disqualified ones, if we look proportionally they have a much lower average waste than the 

others. (FTW5, p. 7). 

 

Brickyard 
Sample 

size 
Defective 

bricks 

Sample 
waste in 

percentage 

B1 1000 50 5.00 % 

B2 1000 33 3.26 % 

B3 1000 41 4.13 % 

B4 1000 51 5.08 % 

B5 1000 44 4.40 % 

B6 1000 55 5.46 %  

 
 

 

Figure 8. Model with sample sizes of 1000 for each brickyard, FTW5. 

 

As can be seen, this team built a model that combines percent defective with a sample of 1,000. 

They concluded that those with 50 or more defective bricks were disqualified. Underlying this approach 

is the idea of applying the rule of three, where the sample size of each brick (which would correspond 

to 100%) was changed to 1000. The team calculated the decrease obtained by each one according to its 

reduction percentage. This only partially worked for the disqualified, but not for the awardees. It must 

be remembered that this is because the binomial probability, in this case, does not transfer linearly. This 

erroneous way of proceeding by this team is a reminder that problems involving samples must be 

approached using probabilistic tools, because in general, the calculation of probabilities is not achieved 

with linear thinking. 

T8 proceeded in a relatively similar way to justify disqualification. They obtained the average of 

the sample sizes (408.5) and the average of the number of defective bricks (19.5), and from these the 

average percentage of waste, 4.77%. Then, T8 compared this average with the percent defective of the 

sample of each brickyard (see Table 1). They saw that all the disqualified brickyards have a percentage 

higher than 4.77%. The T8 members concluded that this was the reason for the disqualification. 

    

Sample size 

Defective bricks 
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It is interesting to note that because concepts such as percentage and linear thinking were 

internalized, the students were able to combine the ideas creatively with other concepts to reach a 

solution, as happened in the last two cases. These teams built two models that they considered 

satisfactory to identify the disqualified brickyards. In their analysis they considered the six brickyards, 

without visualizing a method that could be used to evaluate any brickmaker, as happens in a contest. In 

this regard, the MMP says that in the initial modeling processes, students focus on one part of the 

problem without seeing the whole or as Lesh (2010) points out, “When the functioning of a system is 

relatively ‘uncoordinated’ (i.e., non-systemic) students tend to ‘see’ the ‘forest’ and loose cognizance 

of the ‘trees’―or vice versa. And, when they focus on one type of detail, they often lose cognizance of 

other details” (p. 18). 
 

Presentation of progress (teamwork stage). Since the MMA Brickyards was not completed in the 

time assigned to the first teamwork session, the students were asked to continue with the activity at 

home, and if they needed advice from the teacher-researcher, they should request it. As a result of this 

advice, T2 (which in their previous work had related the wastage to the results of the inverse of the 

binomial distribution) was able to link this function with the disqualification. 

Before continuing with the teamwork (second day), T2 presented its progress in class, as a way of 

supporting all the teams that could not advance in their analysis. In the presentation they related the 

results obtained from the inverse of the binomial distribution with the problem and identified that 

savings exist when the waste is less than the result of this function with an α = 0.025 (Figure 9). 

 

Brickyard 2 
 

Brickyard 2 has a sample of 215 bricks, of which 7 were defective bricks. 
The organizers of the contest accepted and gave the second place to brickyard 2, this is because it meets 
the requirement of less than 7% waste, then through the command in which we will use alpha of 0.025 and 
0.975 to know our result 

 
This data is what RStudio provides us, we simply gave the order to give us the range in which we have a 
waste of 7%, the evaluation is fair because what the contest is looking for is a waste less than or equal to 
8 bricks, in this case were 7 bricks one less than the 8 of the range of 7% of waste so it should not be 
disqualified. 

 

Figure 9. Inverse of the binomial distribution analysis and its relationship to waste, FTW2. 

 

In T2’s presentation, several doubts arose from the rest of the students in the class. This illustrates 

the difficulty of understanding the model of the inverse of the binomial distribution for the solution of 

the MEA. The starting point is to identify the possible values of the number of defective bricks, x, which 

have the highest probability of occurrence, under the assumption that the population waste is 7%. For 

example, if students want to find the interval [L, U], in which the possible values of x can fall with 

probability 0.95, this is: 

 Pr(L ≤ x ≤ U | p = 0.07) = 0.95 

then a good way to find the values of L and U is to match them with quantiles 0.025 and 0.975 of the 

corresponding binomial distribution. In RStudio these quantiles are obtained with the inverse of the 

binomial distribution by: 

L= q0.025 = qbinom(0.025, n, p) and U= q0.975 = qbinom(0.975, n, p) 

So, if x falls outside that interval, it is evidence against p = 0.07. In particular, if x < L, it is evidence in 

favor of p < 0.07, which is what each brickyard should guarantee to participate in the contest. 

Another alternative solution is to calculate the probability that x is less than or equal to the observed 

value in the sample of each brickyard, x0; which with RStudio is obtained with pbinom(x0, n, p). If this 
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probability is less than 0.025, then the observed value x0 is outside and below the aforementioned 

interval and, consequently, it is evidence that p < 0.07. 

One aspect that emerged was a question related to the graphs that several teams made in RStudio 

and where they obtained a very large right tail. As seen in Figure 4 (distribution panel), where students 

plot the binomial distribution for its entire domain (x = 0, 1, ..., n). That is, they did not relate that by 

identifying the values of x with more probability, it also helps to define the values of x for which it is 

convenient to plot the probability function. This confusion was identified using the data analysis 

software. In this case, RStudio helped to understand the difficulties of students in comprehending and 

applying probability distributions. 

At the end of this stage of teamwork, the assignment of the first three places in the activity was not 

resolved, so the teamwork continued, and its results will be analyzed in the next stage. 

 

5.3.  PLENARY SESSION STAGE 

 

In the plenary session, each team delivered a document with its analysis of the previous stage, both 

for the disqualified brickyards and for the awarded ones. In addition, each team made an oral 

presentation, which was videotaped. Below we present the highlights of these documents and 

presentations. To identify to which team a contribution belongs, we use the following codes: 

● T#P for an idea expressed during the team # presentation. 

● T#D for a contribution of team # in its corresponding document.  

For example, T2P is a comment made in the presentation of team 2. 

At this stage, an important evolution was observed in the way students analyzed the activity. All 

the teams, except T1, were able to model the behavior of x with the binomial distribution, that is, they 

modeled the expected number of defective bricks with a higher probability of occurrence. For which 

they used: 

● the inverse of the binomial distribution to identify disqualified brickyards; and 

● the cumulative binomial distribution to identify the winning brickyards. 

T5 did not participate in this stage. 

 

The inverse binomial distribution model for brickyards disqualification. The fact that the teams 

left the initial ideas of percentage, proportionality and linearity, and moved to the use of the binomial 

distribution was a big step in the conceptualization of a random phenomenon, since it implied that they 

identified that with the binomial distribution they modeled the expected behavior of the waste, as a 

function of the sample size, n, and with the premise that the average value of the waste from which they 

had to start was 7%, which is the average for the state of Jalisco. Therefore, a reduction with respect to 

the average implied that the value of x (defective bricks in the sample) was below the most probable 

values, which is, below the quantile 0.025 (L = q 0.025 = qbinom(0.025, n, p). 

All teams identified that they could compare the result of the inverse binomial distribution with the 

waste, x, of each brickyard, and with that identify the disqualified ones. T3 calculated L minus x, and 

indicated that those with negative results were disqualified, while T6 calculated x minus L and indicated 

that those with positive results were disqualified (Figure 10). Thus, both teams reached the same 

conclusion. 
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T3 T6 

 

 

 

 

Figure 10. Results of comparing the waste with the quantile (x vs. L) for each brickyard, performed by 

T3D and T6D. 

 

Most of the teams (T2, T4, T8 and T10) were able to use the inverse of the binomial distribution to 

identify the expected range of the behavior of x, with a 7% waste. Each team interpreted this range in 

its own way. For example, T2 indicated, “The disqualification is fair because what the contest is looking 

for is a waste less than or equal to 7 bricks, in this case it was 10, which is within the range of 7% 

waste” (T2D, p. 6). T4 put the following annotation in relation to the disqualification of Brickyard 1, 

“Because we get that the range of 7%, starts at 7 and the waste we have is 10 so it exceeds with 4 and 

if it is within the range” (T4D, p. 4), and so on for each brickyard. For their part, T3 and T8 were 

creative to express in a didactic way with a graph when the brickyard should be disqualified. This was 

when the waste fell in the left tail (Figure 11). 

 
T3 T8 

 

 

 

The red arrow is the IBD result, and the blue 

arrow is the waste. 
The white part corresponds to the 7% range, 

the gray part to the 0.025 and 0.975 quantiles. 

 

Figure 11. Graphs to explain disqualification [T3D and T8D]. 

 

Another aspect to be emphasized is the values of x for which it was convenient to make the plot in 

RStudio. At the beginning most of the teams obtained a graph like Figure 4 (distribution panel), where 

the most probable values of x are in a small portion of the initial part of the plot, giving the impression 

that the distribution has a very long tail on the right. When the teacher/researcher indicated to the teams 

to check the probability obtained for the x values of the right tail (which was zero), some teams (T2, 

T3, T8 & T10) understood that they only had to include in the plot the values with non-zero probability. 

In this case, RStudio reinforced the conceptualization of the values that x can take, along with those 

that have more probability; a topic that also causes confusion for many of the students. This agrees with 

Dos Santos et al. (2014), who pointed out that making a good integration between the use of statistical 

software to perform the technical calculations facilitates the internalization of the concepts. 

 

The cumulative binomial distribution model for the awarding of the brickyards. Most teams also 

developed the cumulative binomial distribution model for selecting the winning brickyards (T2, T3, T4, 

T6, T8 & T10). As observed when using the Trial-and-error approach with probability distributions, 

the cumulative binomial distribution was one of the first options of the students, which facilitated the 
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transition required to identify the winning brickyards, but only when they realized that with the inverse 

of the binomial distribution it was not easy to order the brickyards in ascending order because a tie 

between second and third place appeared. In this regard, the argumentation of T4 was the following:  

For example, Brickyard 3, here we use the cumulative binomial distribution, and already because if we do 

not use that distribution for example in brickyard number three and two gives us a loss of one brick, then 

they should be tied. But to make the tiebreaker, and good to have a reason for the tiebreaker so in decimals 

we use the cumulative, then the third place gives us a probability of 0.023 which indicates that the closer 

it is to zero the farther away from the 7% that is being asked, so that is why it is in third place, because it 

had 0.023. In second place we have the probability of 0.14, which is close to zero also, so it is in second 

place; and this is where I was telling you that if we used the inverse binomial distribution for second place 

and third place it gave us that they had two bricks of waste in favor. This was a tie, so that’s how we broke 

the tiebreaker. [T4P] 

As can be seen, the design of the MEA Brickyards allows teams to evaluate if they were  the right 

solution or if they should look for another way, which is what they did when they saw that with the 

results of the inverse of the binomial distribution, Brickyards 2 and 3 were tied. As indicated by Lesh 

et al. (2000), the MEA should encourage students to constantly evaluate whether they are on the right 

path or must rectify to achieve the objective. 

 

6. CONCLUSIONS 

 

In the first attempt to solve the MEA Brickyards, the students used strategies based on ideas of 

proportionality and percentages. This became an obstacle, since in the MEA used, it is necessary to 

model a random phenomenon with the support of the binomial distribution to make appropriate 

decisions. Dooren et al. (2003) called this phenomenon the illusion of linearity, which many students 

use to solve probabilistic problems, and that this linear thinking is difficult to modify even after an 

intervention (Konold, 1995).  

The MEA Brickyards was designed in such a way that the solution with percentage or 

proportionality was not a correct form of solution, so when someone adopts it, as happened in the first 

and second stages of this MEA, it becomes easier to convince the students to look for another 

alternative. In this sense, to move from the linear or proportional model to the probabilistic model, 

students must conceptualize several things: first, that the information comes from samples, and as such 

their results are variable. Second, that this variability can be modeled or predicted under certain 

assumptions, in the sense that the most probable values of the random variable (x) can be established 

as a function of the sample size and the average level of waste (7%). With this, an interval with a 95% 

probabilistic coverage can be established where the most probable values can fall, and thus there will 

be a decrease in waste when the observed value of the number of defective bricks is below this interval, 

which corresponds to the left tail of the binomial distribution. Third, it is possible to compare samples 

of different sizes with this distribution.  

The MEA Brickyards allowed students to understand these concepts and led them to model the 

problem with the inverse of the binomial distribution to identify the disqualified brickyards and with 

the cumulative binomial distribution the awarded ones. Although the MEA Brickyards can be 

approached from a more sophisticated decision-making perspective, the first step is to understand that 

the problem is related to a random phenomenon that can be characterized by the binomial distribution. 

This understanding was reached by the students through the activity. 

A conflict that appeared from the first stage of implementation of the MEA was related to the 

samples. Most teams proposed to equalize the sample size so that the contest would be fair, and then 

they used RStudio and plotted the distribution using the whole domain of the function (all possible 

values of x). From this it can be inferred that understanding about the relationships among population, 

sample and distribution, is a key but complex issue. Therefore, it is necessary to expose students to 

more situations in which they can confront their beliefs about the characterization of a random 

phenomenon through probability distributions. 

Conceptualizing random phenomena is not simple, so attention should be paid to the way in which 

data are presented and analyzed, emphasizing their essence of variability, and exposing students to more 

situations that may be close to them, where such variability appears. In this regard, as future research, 

we envision using the MEA Brickyards to delve more deeply into students’ thinking when they 
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encounter problems involving random phenomena. Another possibility is to utilize the MEA Brickyards 

to explore the application of more sophisticated tools for decision-making under uncertainty, such as 

Bayesian statistical inference. We also contemplate the possibility of designing didactic sequences that 

include simulation activities of random processes to assist students in transitioning from the paradigm 

of proportional or linear reasoning to the paradigm of random phenomena (Budgett & Pfannkuch, 2018; 

Garfield et al., 2012; Noll et al., 2018), where the MEA Brickyards could be used to reinforce or assess 

progress on the transition. 
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