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ABSTRACT 

 

Statistical reasoning about a population through samples can be achieved by modeling the 

relationship between population and sample. One way to do this is to model real data situations in 

a technology-integrated environment. With this view, we aimed to investigate how middle school 

students formed distributions and examined their statistical modeling processes through the 

informal reasoning process within the Reasoning with Informal Statistical Models and Modeling 

(RISM) framework. The case study reported in this paper focuses on how the conjecture and data 

models students designed throughout three activities evolved and how their inclusion of a 

fundamentally probabilistic mechanism matured. Findings show the students approached the 

distribution probabilistically with their inferences during the modeling process and grasped the 

statistical concepts they would encounter at a more advanced level. Therefore, we claim that 

students shifted from understanding empirical distributions to understanding theoretical 

distributions. 

 

Keywords: Statistics education research, Distribution; Informal statistical inference; Statistical 

modeling; Statistical reasoning; TinkerPlots 

 

 

1.  INTRODUCTION 

 

Distributions are conceptual, organizational structures or mental tools that facilitate the 

development of statistical thinking and reasoning. These structures are complex, and their 

understanding requires development and cultivation. Thus, many questions arise about the conceptual, 

pedagogical, and research-related aspects of reasoning about distributions (Pfannkuch & Reading, 

2006; Rumsey, 2002). Statistics teaching focuses on building and defining distributions particularly 

with an increasing emphasis on making and testing data-based assumptions, and the introduction of the 

term “distribution” (National Council of Teachers of Mathematics, 2000). The interpretation of 

distributions and their editing and manipulation to provide more information from the data are often not 

mentioned in statistics classes (Lehrer & Schauble, 2004). Students, however, can explore relevant 

contexts if they understand different distribution structures built on the same data (Bakker, 2004a). 

First, students must understand what the various graphical data representations and data distributions 

mean to interpret and evaluate the data (Bakker & Derry, 2011; Bakker & Gravemeijer, 2004). 

Interpreting data and their distribution is crucial and a contemporary global necessity. Studies have 

shown that students and teachers/prospective teachers do not understand or focus on distribution to 

make statistical inferences about data (Canada, 2004; Hammerman & Rubin, 2004; Makar & Confrey, 

2002, 2005). Even when students have been taught the fundamentals of statistics (measures of central 

tendency and variability), they seldom understand its relevance to data distributions and variation 

(Watson, 2009). In elementary school, the topic of data handling is heavily focused on calculations of 
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statistics, such as the mean or median, despite the fact students will need to advance towards an 

understanding of theoretical distributions in later school years.  

In statistics teaching, students will meet two kinds of distributions. The first are empirical (or data) 

distributions, for which students learn to generate, define, and interpret graphs using empirical 

distributions. The second are theoretical (or probability) distributions, such as the normal or binomial 

distributions. While empirical distributions may be explained by defining and interpreting variability, 

theoretical distributions are models that explain and predict data variability (Wild, 2006). While both 

are similar in terms of characteristics like shape, students must explain the distinction between a 

theoretical and empirical distribution using the idea of variability (Garfield & Ben-Zvi, 2008). They 

should also focus on variability in the context of sampling (Garfield et al., 2008; Shaughnessy, 2019).  

Wild (2006) used distribution as a lens to see variability. In statistics teaching, sample, distribution, 

and probability distribution types must be employed to facilitate reasoning about distributions (Noll & 

Shaughnessy, 2012). The distribution of the sample may serve as a bridge between empirical and 

theoretical distributions in statistics learning, since it provides students with a sense of the variability 

between samples when they go from considering empirical (i.e., data) distributions to theoretical (i.e., 

sampling) distributions (Garfield & Ben-Zvi, 2008). As a result, it is critical to examine the type of 

distribution students choose to represent their data to comprehend how they reason about the 

distribution. The research presented here provided students with statistical modeling exercises and 

instructions to create, review, compare, and conjecture about the data models utilised. The aim was to 

investigate their statistical reasoning to see how they formed the notion of distribution. 

Statistics deals with data as aggregate and looks for patterns in data distributions to make inferences 

(Ben-Zvi & Arcavi, 2001). As a result, it is critical to distinguish between data and data distributions. 

Numerous studies have demonstrated that students view data as individual values rather than aggregates 

(Konold et al., 2007; Ben-Zvi & Arcavi, 2001) and that the use of technological tools can facilitate 

students thinking about data (Chance et al., 2007). Biehler et al. (2012) claimed students can understand 

statistical concepts more quickly if computation or graphing is reduced via the use of software. 

Additionally, Konold et al. (2007) argued that the use of the divider tool in TinkerPlotsTM 

(https://www.TinkerPlots.com), which divides the sample into as many regions as desired, represented 

by boxes on the screen with case numbers written in the corner of each box, assists students in exploring 

the patterns of distributions. Additionally, the researchers asserted that data and chance can be linked 

to simulations created with TinkerPlotsTM sampler tool, which is used to develop and run probability 

simulations, thereby creating data factories (Konold et al., 2007). Simulations can assist students in 

comprehending the probabilistic nature of data and act as mediators between data and chance. Given 

the critical role of context in statistics, connecting data, chance, and context with statistical modeling 

enables a meaningful connection (Pfannkuch et al., 2018).  

While statistics is the science of inferring meaning from data, it encompasses data, data analysis, 

and statistical inference (Moore, 1997), and statistics instruction is increasingly contextualized using 

authentic activities that are meaningful to students (Wild et al., 2011). For this study, it is asserted that 

statistical inference enables an assessment of a more general cognitive development toward the use and 

comprehension of distributions (Pfannkuch, 2006; Reading & Reid, 2006).  

If a model is created for a statistical purpose, it should have two distinctive features: the first is that 

the phenomenon of interest includes variability, and the second is that the existence of probabilistic 

predictions should use variability (Brown & Kass, 2009). In the modeling process, students consider 

variability and uncertainty (Pfannkuch et al., 2018). If the modelers are young students, probabilistic 

thinking brings informal statistical reasoning. Since probability feeds uncertainty and is the state of 

measuring uncertainty, informal reasoning is indispensable (Dvir & Ben-Zvi, 2018). TinkerPlotsTM is 

accepted as a powerful tool for statistical modeling since it provides learners with both data analysis 

and sampling in statistical problems as they model data to produce explanations (Pfannkuch et al., 

2018). 

In the study reported in this paper, we aimed to examine how students learn and make inferences 

during the process of generating representations of distributions of quantitative data considered in the 

modeling process, which they develop by expanding their assumptions in terms of their real-life 

inquiries. We examined how students perform the reasoning process by modeling the data simulated 

through TinkerPlotsTM. We also analysed students’ comments about the sample according to their data 

distributions. While using TinkerPlotsTM in this study, we investigated the following research questions: 

https://www.tinkerplots.com/
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“How do middle school students make a comparison of conjecture and data models in a real-world 

setting?” and “How can we explain students’ distributions via statistical modeling with a lens of 

informal inferential reasoning?” 

 

2. THEORETICAL FRAMEWORK 

 

Exploratory Data Analysis (EDA) refers to analyzing data in exploratory ways. Some recent 

research on EDA has focused on students’ informal inferential reasoning processes between the real 

and probabilistic worlds (Manor & Ben-Zvi, 2017). A probability approach, stressing how statisticians 

employ modeling activities to solve problems, lacks some true data exploration elements, such as the 

formulation of a research question (Manor & Ben-Zvi, 2017). The integrated modeling approach (IMA) 

combines these two approaches with modeling-based guidelines. It is an approach that perceives 

statistical inference as a spiraling process between probability and the real world, with the goal of 

students understanding the link between sample and population (Aridor & Ben-Zvi, 2017). IMA was 

developed to guide the design and analysis of experimental tasks, deepen students’ modeling while 

making informal statistical inference (ISI), and guide the assessment of that reasoning (Braham & Ben-

Zvi, 2017).  

In contrast, informal inferential reasoning (IIR) is defined as generalizing about the population from 

random samples using informal statistical tools (Makar et al., 2011). Makar et al. further argued that 

the statistical context chosen to prepare the authentic environment and determine the authentic aspects 

in statistical research would provide a common language for researchers to better express statistical 

reasoning. Students are expected to present both formal and informal representations about the concept 

being investigated simultaneously in the statistical inference process. The fact that this process is carried 

out both simultaneously and in the form of explaining the models makes it difficult to determine what 

students have or have not learned. Based on these definitions, the comparison model developed between 

the participants’ conjectures and data models was considered by the research as a form of IIR. The 

statistical modeling process (Dvir & Ben-Zvi, 2018), presented as sub-modeling process, also forms the 

basis of the model comparison framework. In addition, the framework does not distinguish between the 

data and conjecture models, instead suggesting the modeler used similar considerations when exploring 

both the data and conjecture models.  

One of the theoretical frameworks in which students are essential as modelers is Reasoning with 

Informal Statistical Models and Modeling (RISM; Figure 1). This framework, created by Dvir and Ben-

Zvi (2018, p. 1185), advocates statistical modeling as an alternative modeling method, including 

statistical reasoning. It is particularly useful to divide the informal modeling process into three separate, 

though not independent, modeling processes: the process the data model goes through, the process the 

conjecture model goes through, and the process used in comparison through the comparison model. 

Consequently, simultaneous evaluation of many aspects of the context will enable students to explain 

the complicated and challenging nature of data handling (Arnold & Pfannkuch, 2014). 

 

 
 

Figure 1. The RISM snapshot of an informal statistical modeling process (Dvir & Ben-Zvi, 2018). 
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In the RISM framework, the “conjecture model” is used. Whether the conjecture under 

consideration is a statistical model is important for this framework. The compatibility of the conjecture 

model with the probabilistic mechanism supports the belief that students reason with statistical models. 

The modeler transforms the obtained conjecture model into a data model. This process can be defined 

as the process of transition to data suitable to the investigated phenomenon. The modeler translates the 

patterns observed in the data into a data model. While students focus on creating models for both 

assumptions and data, an informal model simplifies the process of evaluation: students use the 

comparison model as a tool to evaluate the consistency between the data they create and the assumption 

model. We see this dual purpose as two planes where the statistical modeling process is carried out. In 

a plane, the phenomenon under investigation (for example, the relationship between height and weight) 

is examined and simplified into a model; in another plane, a more general assumption (e.g., a linear 

relationship) is symmetrically simplified. The comparison model acts as a catalyst in the frame. It adds 

movement to the models that were applied. Each snapshot describes the current version of all three 

models and recognizes a difference in one (or more) elicits the construction of a new snapshot. The 

result is then a discrete set of snapshots, each containing a multitude of organized information (Dvir & 

Ben-Zvi, 2018). Dvir and Ben-Zvi (2023) also explained the dual nature of conjecturing, in which one 

can lead contradictory/biased or true predictions, shows the potential of pedagogical benefits of 

teaching the shift between real-world-modeling to probability-world modeling. 

Students can use any statistical model they create in RISM to run probabilistic queries on multiple 

samples. This not only builds students’ confidence in their models, but also allows them to test their 

assumptions probabilistically. In Figure 2, Dvir and Ben-Zvi (2019, p. 925) show the median model’s 

transformation from a data model to a conjecture model using symbols. 

 

 
 

Figure 2. Illustration of the median model (Dvir & Ben-Zvi, 2019). 

 

In the study conducted by Dvir and Ben-Zvi (2019) to examine the RISM process, they considered 

students’ modeling from an in-depth perspective. Researchers were able to inform the student about the 

process by instantly detailing the representation in Figure 2 through the interview with the participants. 

For this purpose and when Figure 2 is examined, it is explained whether the students need any informal 

statistical inference in order to transform the data models they deal with during the activity into 

conjecture models; and, in cases where students want to generalize the situations they deal with and 

cover all the inferences they make, they change the model they have created or re-create them and 

switch to the probability world (Dvir & Ben-Zvi, 2019). 

 

3  METHODOLOGY AND DATA COLLECTION PROCEDURE 

 

This qualitative case study focuses on a specific topic, event, or situation, and in-depth information 

is obtained (Creswell & Poth, 2016). As Patton (2014) interpreted, “case study involves organizing data 

for specific cases for in-depth study and comparison,” and deductive analysis examines “data to 

illuminate pre-determined sensitive concepts” (p. 534). The teaching setting here is the case in this case 

study. 
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3.1.  STUDY CONTEXT 

 

The study was conducted in the eastern region of Turkey at a school with a computer lab. The first 

researcher went to the school and informed the seventh-grade teachers about the study and the use of 

TinkerPlotsTM. Teachers recommended several students as volunteers. The study group consisted of 22 

students who volunteered and whose parents provided permission to participate. Only eight students 

attended on a regular basis; the others came occasionally. Therefore, we analyzed the data of eight 11- 

to 13-year-old students: Aylin, Fatih, Hakan, Selim, Utku, Halit, Yaman, and Reyhan (all pseudonyms). 

With the exception of Reyhan, the students were in the seventh grade. Before instruction, we had a few 

lab sessions to practice TinkerPlotsTM. The research team worked hard to get the students to talk because 

they were initially shy. The students were required to attend the lab sessions. The students were eager 

to learn TinkerPlotsTM and complete the worksheets. The study group met once a week for two hours 

after classes, for a total of six hours. A group of students sat side by side in front of a computer and 

discussed their responses. Seating plans were made, and the same groups worked together throughout 

the lab. 

The students were all taught statistics in mathematics courses. In their primary school years between 

1st and 4th grades, students learned about frequency tables, tally tables, pictograms, bar charts, and 

reasoning on bar charts. In the 5th grade (beginning of middle school), they learned about creating 

research questions, collecting data, organizing data in a bar chart or frequency table, and double bar 

graphs. In the 6th grade, they learned about data analysis, such as minimum and maximum values, mean 

and range. Students learnt line graph, pie chart, mode, and median in 7th and 8th grades. The curriculum 

excludes histogram and boxplot. The only probability concepts taught in first eight grades were 

probability of a basic event. Despite some shortcomings in this curriculum, there is evidence that 

students could learn the concepts intuitively through activities designed to their level (Kazak et al., 

2014).  

 

3.2.  ACTIVITIES AND DATA COLLECTION 

 

This study is part of a larger study investigating students’ modeling processes using statistical 

concepts over six weeks. It summarizes the findings of three activities focused on the distributions of 

quantitative variables using activities modified from those found on the TinkerPlotsTM website: 

Sketching Distributions, Mystery Mixers, and Fish-Length Distributions 

(http://www.tinkerplots.com/activities/data-analysis-and-modeling-activities). Activities were 

translated into Turkish and some questions were modified for length or to split them into multiple parts. 

Activity 1: Introduction to distributions. This activity was based in the TinkerPlotsTM Sketching 

Distributions Activity and involves describing the shape of a data distribution (left skewed, normal, 

right skewed, uniform, etc.) using its center and variability, and identifying distribution properties. In 

the first part of the activity, the teacher handed out the activity sheets showing 5 distributions with 

different shapes. The teacher showed larger versions of the distributions one by one and asked the 

students to match the distribution shown on the screen with the distributions on their worksheet. the 

bigger ones of these shapes of the distributions to the class and let students match them. Then students 

opened a file in TinkerPlotsTM and created a distribution for the variable, height. The researcher then 

discussed the shape of that distribution along with other potential shapes. The research then asked the 

students to find variables in the data set whose distributions matched the shapes of the distribution on 

the worksheet. This activity was designed to help students create their own distributions for the 

variables they chose and recognize the differences between them. We waited for students to discuss 

“which variables form a left- (or right-) skewed distribution.” When the researcher realized the students 

understood the shapes of distribution, we handed out the worksheets. The students had to match the 

distribution models they created in the worksheets to the displays on their screen. The student was asked 

to write the variable he/she chose for the distribution on the worksheet. 

Activity 2: Discovering the distributions. This activity was modified from the TinkerPlotsTM 

Mystery Mixers Activity and aims to help students discover the features of the distribution of the sample 

when increasing sample size. In this activity students interact with the sampler tool. This activity 

contains four different data sets, each containing 500 positive integers between 0 and 100, but with 
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different distributions. There data in the first and third mixers followed a normal distribution. The 

second mixer contained a left-skewed distribution, and the fourth mixer contained a right-skewed 

distribution. Each mixer’s sampler generator was set to draw five numbers from the set and add them 

to the sample. Students were asked to estimate the center of the population distribution from the 

distribution of the sample using the minimum sample size. 

The goal is to increase the size of the sample until you get a sense of the center of the hidden 

distribution, but each observation has a ‘cost’ and students were challenged to find the center of the 

population distribution keeping the cost as low as possible. We asked them to decide on the sample 

sizes in the worksheet and the distribution’s center to better understand the distributions they created. 

This way, students could estimate the data clumping region and discover different distribution displays 

while creating a sample which is representative of the population. 

Activity 3: Comprehending the distributions. This activity was modified from the TinkerPlotsTM 

Fish-Length Distribution Activity and teaches how to compare two distributions using means and 

medians. Students had to decide whether to buy genetically modified (GM) fish from a farmer. There 

were two types of fish: fish farmers’ fish and GM fish. TinkerPlotsTM contains a dataset representing a 

population of 625 fish of both types combined. Students would select samples without replacement, 

first of size 130 and then of size 15, and would compare the fish lengths in two groups using their center 

and variability. The students were instructed as follows: ‘Sample 130 fish and calculate their mean and 

median. Repeat 2 or 3 times. Do mean and median change after running the sampler for 130 fish? If so, 

how? How long should the sampler be to tell if GM or non-GM fish are longer? Why? Compare the 

sample averages to the population average. What do you get?’ While comparing, students used several 

tools such as averages (mean and median) and hat tool. In the second part of the activity, students were 

asked if samples of 15 and 130 fish were sufficient to conclude that GM fish were longer. We expected 

them to confirm their answers while comparing them with the size of the population, that is, 625 fish. 

The goal was for participants to see the relationship between the distribution of the population and the 

sample and explain it by relating it to centers and variability. 

The data collection tools used in this study were three worksheets for each student, video recordings 

of their screens, and field and observation notes of the researcher. The video recordings included the 

students’ work on TinkerPlotsTM during the teaching. The lesson started with distribution of activity 

worksheets, and running TinkerPlotsTM, then we started to record their work on the computers. Field 

and observation notes included the researchers’ notes taken during the classes and their pair work. 

During the data analysis, we triangulated the data sources and confirmed the results with each other.  

 

3.3.   ANALYSIS 

 

Descriptive data analysis was used to analyze the collected data in a deductive approach. While 

focusing on the concept of distribution, the descriptive analysis was done according to Table 1, which 

shows the conjecture, data, and comparison models for each activity according to the RISM framework 

laid out by Dvir and Ben-Zvi (2018). The data analysis aims to present the findings directly to the reader 

in an edited and interpreted manner. Therefore, the data obtained is first described systematically and 

clearly, then these descriptions are explained and interpreted, and direct quotations are often given to 

reflect the participants’ views. 
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Table 1. Data analysis 

 

 Conjecture Model Data Model Comparison Model (IIR) 

Introduction 

activity 

Distribution curve of 

the data according to 

the ‘height’ variable. 

Other displays obtained with 

different variables similar to 

the distribution displays 

included in the activity sheet. 

Classification of distribution 

displays by matching the 

obtained distribution curves and 

the distribution displays on the 

activity sheet. 

Discover 

Activity 

The minimum sample 

size determined in the 

mixer specified on the 

TinkerPlotsTM window. 

Determining the central 

aggregate regions using 

TinkerPlotsTM tools for 

distribution displays obtained 

from the data via the mixer. 

The relationship between the 

distribution displays determined 

by sample sizes obtained in the 

mixer and the central aggregate 

regions. 

Comprehend 

Activity 

Comparing the lengths 

of normal fish and GM 

fish (understanding the 

difference). 

Generating and comparing 

distribution displays for 

normal and GM fish with a 

sample size of 15 and 130. 

Sampling by comparing the 

distribution displays of samples 

created with a sample size of 15 

and 130 and population. 

 

Rather than providing quotations from each participant in each activity, we summarized the 

students’ responses to ascertain their understanding of the statistical concepts discussed in the activities. 

As a result, we did not provide all of the participants’ responses; rather, we analyzed how students 

reached at the concepts from their perspectives and presented their summaries.   

  

4. FINDINGS 

 

In this study, we examined the conjecture models, data models, and the RISM processes arising 

from the comparison of these two models to examine how they sense, discover, and comprehend the 

distribution concept.  

 

4.1.  FIRST ACTIVITY: INTRODUCTION TO DISTRIBUTIONS 

 

We explained to the students the stages involved in generating the distribution for the variable 

height, as illustrated in Figure 3. This display of the distribution was created by all students. We were 

curious as to how our participants would transfer the distribution they saw on the screen to a blank piece 

of paper. 

 

 
 

Figure 3. The distribution of the height data. 

 

Students then sketched distributions of other variables in the dataset and attempted to depict the 

distribution as a curve by illustrating the increases and decreases in the groups into which the data were 

stacked. Aylin and Selim’s sketches can be seen in Figure 4. In her sketch (Figure 4(a)), Aylin addressed 

the variable ‘TV time watched on weekends.’ As seen by the erasures, Aylin first drew a jagged curve 

and then created a smooth curve. Selim retained the jagged features in his sketch (Figure 4(b)). 

Additionally, he placed the Y-axis to indicate the region in which the data is stacked.  
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Students mostly focused on the increase and decrease in the stacks of data in specific regions as a 

result of using incorrect variables in their conjecture model. Aylin and Selim created a conjecture model 

by sketching the researcher’s curve rather than the distribution of the variable they chose and graphed 

on the TinkerPlotsTM screen. Additionally, it was noted that only Reyhan was unable to create a model 

in TinkerPlotsTM, even though she paid attention to the instructions and followed the researcher’s 

directions. 

 

 

 

Figure 4(a): Aylin’s sketch.  Figure 4(b): Selim’s sketch.  
 

Students discussed their sketches in class in accordance with the researcher’s instructions and 

agreed on the different shapes of distributions and the essential characteristics required in an appropriate 

sketch of the distribution. At this point, Fatih and Reyhan chose the variables birth month and grade 

level and created the graphs shown in Figure 5. Though they could match their displays to the shapes 

discussed, the students were unaware that the variables they chose were categorical, and not continuous. 

 

  

Figure 5(a). A section from Fatih’s work 

on TinkerPlotsTM (data model). 
Figure 5(b). A section from Reyhan’s work on 

TinkerPlotsTM (data model). 

Furthermore, Fatih asserted that the distribution he constructed for the grade level variable was a 

normal distribution, which it was not. Reyhan asserted that the representation in Figure 5(b), which she 

generated using the birth month data, demonstrated a distribution. Fatih perceived the data as dispersed 

and ensured the data overlapped with the stacking tool he has used. 

The distributions presented in the worksheet belonged to larger data groups and were different from 

the data models created by the students. For instance, Hakan experienced the modeling process as seen 

in Table 2 by expanding his distribution display in TinkerPlotsTM for the variable ‘TV time watched at 

the weekend’ according to the conjecture model in the worksheet. His inference was that the display 

similar to the conjecture model on the worksheet could be classified and named for each type of 

distribution that was learned, such as skewed or normal distribution (Table 2). 
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Table 2. Hakan’s modeling process 
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From Table 2, we see that he represented the data increase region as more rounded in his conjecture 

model’s distribution curve, since he sketched a normal curve. Then he separated the HaftasonuTV in 

the data model he constructed, allowing the data to form a distribution representation. When he 

reviewed the comparison model, he reasoned that the distinct placements of the values in the data group 

in the worksheet and the data in the data model he constructed should be same. He was unconcerned 

with the minimum and maximum values, but also with the conjecture model generated by the 

distribution representation as a whole. 

In general, students made inferences by focusing on the displays’ peaks, as shown in Figure 5. 

While they were determining the shape of distribution according to the increase and decrease of the 

peaks, some thought of only the data stacked at specific regions as distribution. For instance, Aylin 

determined the variables in the activity according to those who could create a distribution. Yaman made 

something similar to what Aylin did, and he explained as follows: 

 
Yaman: When some of the dots [cases] were stacked on top of each other, I had to drag 

them sideways and align vertically, but for others, this was not necessary. After 

creating the distribution that I prepared for the variables, I matched them normal, 

left- and right-skewed 

 

This finding brought the understanding that students now thought of the distributions according to how 

data spread. We claim that they viewed the distribution intuitively by seeing the data display 

holistically.  
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When we examined the participants’ inferences overall, we concluded that Hakan, Halit, Utku, and 

Fatih, who were able to sense and express the notion of distribution, compared the variables and 

distribution shapes. Reyhan, Yaman, Aylin, and Selim, however, did not demonstrate they had 

developed a sense of distribution. They based conclusions on the conjecture models they generated 

from the distribution representations provided in the activity sheet, without comparing distribution 

shape. 

 

4.2.  SECOND ACTIVITY: DISCOVERING THE DISTRIBUTIONS 

 

The students’ conjecture models had the sample sizes (for each of the four mixers in the activity) 

determined by the distribution process. Selim decided to group the data using the divider tool. The 

sample sizes generated by Selim for each of the four mixers were consistent with each other. Selim said 

that “when the distribution is on the left or right side, I use the divider tool more to get more regions. 

When it is normal distribution, I do not need to get many regions.” It can be concluded that Selim 

discovered the concept of distribution while he was considering the center of the distribution. It was 

observed that while using too many dividers to predict the location of the center for a right- and left-

skewed distribution, he used the divider tool less because he knew that the center of the normal 

distribution would be in the middle. In addition, when deciding on the distribution shape, Selim 

specified the regions where data were stacked. Therefore, we can claim that Selim successfully 

discovered the distribution of the samples he created by assuming consistent sampling for all four 

mixers, as shown in Figure 6.  

 

 
 

Figure 6. Selim’s sketches on the paper for four mixers during the second activity. 

 

Reyhan and Halit selected the same sample size for each mixer (30 and 40 for the sample size, 

respectively). Although they chose the same sample size for each mixer, their statistical reasoning was 

different. For example, the following dialogue took place between the researcher and Reyhan: 

 
Reyhan: I try to take the highest number [of the dots] in one box (in the region) and the 

lowest number in the others. 

Researcher: Why do you always choose the same sample size? 

Reyhan: Because you asked us to choose the smallest sample size. When I set a smaller 

number [for sample size], it does not work that way. There is not too much in one 

box (in the region) and less in the others. 

 

Since Reyhan could not establish a sense of distribution, she did not approach the data holistically. 

Therefore, she could not make an inference about the center of the sample. Unlike Reyhan and Halit, 

Utku was the student who assumed the most inconsistent and largest sample about distributing the data 

or the center of the data.   
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Due to the randomness of the samples created from four mixers, each student would come up with 

a different sample size. Therefore, each student was analyzed according to their work without being 

compared with others. The important thing is that the students could see the data distribution with the 

same amount of repetition. Selim decided on how the data was spread by discovering the shape of the 

distribution. It enabled him to select smaller samples without being affected by the randomness of the 

samples. In contrast, Yaman made a correct prediction about the central region of the sample 

distributions he created, but because he could not discover the distribution of the population, he decided 

to sample it with more data. Due to this situation, Yaman did not make a decision based on the data in 

the fourth mixer on the central region. The central region was the region in which data was stacked the 

most. 

We expected the students to make their conclusions using the divider tool in TinkerPlotsTM and 

associate the center of the distribution shape with the increase in the sample size. The important thing 

here was not to what extent the students divided the data or which size they decided to sample. We 

wondered how many regions the students would divide the distribution into according to the sample 

size to decide on the distribution shape. 

Fatih estimated the center of the distribution by dividing all the sample distributions he created into 

ten regions. Although his reasoning made it easier for him to see that the specific center of the data 

model that he generated consisted of ten divisions, the sample distribution in the fourth mixer was not 

according to this order and consequently caused him to predict the center inaccurately. Even though 

Reyhan worked in all sample distributions with the same number of divisions, she never changed the 

number of data and divisions for each sample in the mixers. Selim chose to use a small number of 

dividers for normal distributions and more dividers for left- and right-skewed distributions. Figure 7 

below shows Hakan’s data model while he was trying to find the central region. He tried to show the 

divider tool by expanding the region where the data was mostly stacked. 

 

 
 

Figure 7. Hakan’s data model based on the fourth mixer sample. 

 

Hakan enlarged the region rather than increasing the sample size of the fourth mixer sample to 

ensure the data entered the intended region. He adjusted the region’s size because the regions created 

with the divider tool were not what he wanted. As seen in Figure 7, the first section is larger than the 

others, and their sizes may be adjusted by dragging the dots in the gray boxes’ corners. Noticing this 

incident, the researcher inquired as to why Hakan picked that particular tool. “I'm not sure,” Hakan said. 

“I couldn’t locate the spot where it was heaped up. I considered many possibilities for this. When I 

picked this, it felt natural for me to pick the section with the data layered on top of one another. That is 

why I choose it.”  

The procedure by which students increased the sample size using the ‘RUN’ key on the sampler 

and decided which regions to include using the divider tool was supposed to be the data modeling 

process. Students arrived at the center aggregation region by engaging in the modeling process and 

exploring the central aggregation region using either the sample size or the number of divisions. 

 

4.3.  THIRD ACTIVITY: COMPREHENDING THE DISTRIBUTIONS 

 

The students built their conjecture models with TinkerPlotsTM to determine whether GM fish or 

normal fish were longer, according to a sample of 130 fish. In these models, we observed that some 
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students responded with their ideas, while others still did not fully understand the distribution concept. 

While Aylin, Hakan, Utku, and Reyhan each prepared a dot plot (see for example Figure 3), Fatih, 

Yaman, and Halit did not produce a dot plot. The students who created dot plots answered the research 

question and saw that GM fish were longer. Of the students who did not create a dot plot only Fatih 

claimed that normal fish were longer than GM fish, when later he constructed a distribution of length 

variable. None of the other students who did not create dot plots answered that question correctly. 

Anticipating that students knew little about variability, we used the hat tool (a tool that makes a hat 

plot of data) for groups of GM fish and normal fish to determine how they decided on how variable the 

distribution was. Except for Utku, students said that the distribution of GM fish was more varied than 

normal fish. Utku answered the question by stating, “There was neither an increase nor a decrease in 

normal fish, but it gradually increased and slightly decreased, which means that it is unstable, which 

means that it is variable.” By looking at the distribution of normal and GM fish of different sample sizes 

using another TinkerPlotsTM tool (such as divider, averages tool), we wondered what inferences the 

students would make for sample size this time. The students first examined two different sample 

distributions composed of 130 fish. Students created data models using different TinkerPlotsTM tools 

when comparing distributions. It was Aylin, Hakan, and Yaman who chose both mean and median using 

the Averages tool (it is a tool with which users can find the mean, median, or mode of the data set). 

Although these students found at least five different measurement results, we noticed they took notes 

from the results whose arithmetic mean and median values were the same or very close to each other. 

For instance, Aylin explained the reason why her measurements were similar as follows: 

 
Aylin: Every time I press the RUN button, the values of the fish-types change. But 

sometimes this [causes little change], sometimes there is a lot of difference. I am 

looking to see how much the difference has changed. I write on a paper when I 

find close results 

 

Comparing the sample values, Yaman compared the distribution of the same fish groups with 

different sized samples. Aylin discovered variability by interpreting the averages according to only one 

of them, even though she showed both of them on the distribution. Table 3 below shows Aylin’s 

modeling for 130 fish. Throughout the modeling procedure, Aylin only employed tools to determine 

the arithmetic mean and median values. She customized the tool she used to convert the mathematical 

mean and median values she determined to their numerical equivalents. Additionally, while she 

determined the arithmetic mean and median values for each distribution representation, she was 

primarily interested in determining the difference between the arithmetic mean values when comparing 

two distinct distributions. 

 

Table 3. Aylin’s modeling for 130 fish (the variable seen in x-axis is the fish length) 
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Along with Aylin’s modeling process (Table 3), Hakan considered the difference between the 

median and arithmetic mean values produced for each distribution representation he constructs. When 

the researcher inquired as to why Hakan kept repeating himself, Hakan stated, “The two symbols (for 

mean and median) over there should be near to each other. Then it is true.” Then, we asked the students 

the question of, “How do you comment on the distributions you created for 15 and 130 fish when you 

compare them to the distribution you created for all the fish in the lake (population of 625 fish)?” We 

examined the inferences they made by referring to the question. When Aylin chose a different sample 

size, she made her explanations with variability. She said that for 15 fish, the center regularly changed; 

for 130 fish, the center moved less; for 625 fish, the center did not change at all in any of the random 

distributions. Therefore, Aylin thought that by selecting all 625 fish, she could make a better decision 

about whether the normal or GM fish would be longer. Halit made his decision based on the 

distributions of the samples he created and made an inference from the data stacked in these 

distributions. He said that among 15 fish and 130 fish, he could find a more accurate answer to the 

research question with 130 fish because 15 fish did not show any center. When he examined the 

population, however, he said he would decide to use that distribution because it gave more insight into 

the 625 fish in the population.  

Hakan, who was interested in the displacement of the center of the resulting distributions (he could 

not identify the center from the distribution of data), said that “there was no distribution with 15 fish,” 

which was similar to Halit’s explanations. He discovered, as Aylin did, that the center of each 

distribution was also different. Hakan however, reasoned with the distance between the median and 

mean of data sets, unlike other students, as seen in Figure 8 below. He explained that 130 fish were 

better at deciding which type of fish would be longer because when he worked with 130 fish, the 

averages were closer to each other. Among the students, only Reyhan could not produce any ideas about 

the relationship between the sample and the population, or the meaning of the distribution display she 

generated, or about noticing the variability. She said that she had seen the distribution with 15 fish in 

greater detail, found the center more easily, and struggled to have the averages of each sample she 

created to be the same. 
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Figure 8. A screenshot showing Hakan’s modeling process in Fish Length Distribution activity. 

 

When we examine the findings of Fatih, Halit and Yaman, we claim that since they could not create 

dot plots, they could not make comparisons about the lengths of normal and GM fish. We noticed that 

only Aylin was using the distribution curve for the representation of the data, while Halit and Utku paid 

attention to the columns where the data were stacked. Only Yaman wanted to compare the data using a 

table. When the informal inferences of the students are examined, we can see they follow different 

processes.  

The findings are summarized in Table 4 using the RISM framework. The students participated in 

three distinct tasks that focused on feeling the distribution, understanding the distribution, and grasping 

the distribution, in that order. In addition, the table indicates how the students developed distribution 

models throughout the activities. During the process of distribution modeling, the students used 

informal inferential reasoning on statistical concepts such as center and variability. Moreover, we may 

assert that it is possible to teach fundamental statistical ideas without focusing solely on statistical 

calculations on the data set. 

 

Table 4. Summary of overall findings 

 
Activity Conjecture Model Data Model Comparison Model (IIR) 

F
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The distribution display, which 

was seen as individual cases, 

began to be seen holistically. 

The distribution display was 

created by stacking the data 

vertically and spreading it 

horizontally. 

Distribution displays 

belonging to different data 

groups were grouped 

according to distribution 

shape. 

S
ec

o
n

d
 

A
ct
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Distribution display was obtained 

by increasing the amount of data 

with data selection using the 

sampler tool. 

The location of the center 

was estimated according to 

the distribution shape. 

The outlier found on the 

distribution display was 

eliminated when estimating 

the location of the center. 

T
h
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Two different distribution 

displays were compared with 

respect to a particular variable. 

The distribution shape 

formed according to the size 

of the data obtained from the 

sampler tool was 

determined. 

According to the statistical 

inference, the distribution 

display was constructed with 

the data group whose size was 

determined by the student. 
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5. DISCUSSION 

 

In this research, the findings revealed the inferences students had obtained in their modeling 

processes with data simulated by TinkerPlotsTM. We looked at their statistical modeling through the 

RISM framework’s window to examine the students’ reasoning processes. In this section, we discuss 

the contributions or differences that the findings can make with regard to the theoretical framework of 

RISM, under the headings of the meanings that stand out in the activities. We discuss and interpret how 

the students’ emerging statistical reasoning evolved through the modeling process they experienced. 

The findings of this study show that the students constructed alternative distribution models, and we 

will discuss these reasons and how students’ statistical reasoning was facilitated by this in the following 

part. 

 

5.1.  DEVELOPMENT OF STUDENTS’ MODELING 

 

We observed in the first activity that the students created the conjecture models by showing the 

given variable type and aggregated regions, especially according to the increases and decreases in the 

data set’s peak values, and by attending to the minimum and maximum values of the data set. The 

findings given in Figure 4 show that students express the data, which they regard as individual cases, 

as a line graph, as they show the distribution with the line between peak values at first sight. As Cobb 

et al. (2003) claimed in their study, students tend to see the data sets as hills. Therefore, students were 

trying to use the connect these hills in the form of a line graph. 

We did not see any difference in students’ design of data models in TinkerPlotsTM, but the fact that 

students thought the models seen in Figure 5 form a distribution suggests they did not consider the types 

of variables, because the displays were of categorical variables, and the students who made these models 

did not attend to how the data were clustered. Concerning this, Watson (2005) stated that young children 

form distribution displays and that it is typical for complex concepts and characteristics of distribution 

to be included in these displays to a large extent. 

In their study, Dvir and Ben-Zvi (2018) interpreted their participant’s (Erez) modeling process by 

exploring how they made a transition from the conjecture model to the data model. According to the 

RISM framework, when the students’ conjecture and data models were compared in the second activity, 

the divider tool used by Selim when switching from the conjecture model to the data model established 

the relationship between the models. According to this relationship, Selim noticed the stacks according 

to the different shapes of distribution presented in the second activity. 

 

5.2.  DEVELOPMENT OF STUDENTS’ INFORMAL INFERENTIAL REASONING 

  

In our study, the students’ inferences about the shape of distributions were based on matching them 

with different distribution displays from the data models. The literature states that students need to focus 

on the characteristics of the data sets to think holistically about distribution, which begins as individual 

cases in their eyes (Ben-Zvi & Amir, 2005; Konold & Higgins, 2003). Furthermore, students were 

confused when they were matching the types of non-perfect probabilistic distributions of different data 

sets while they were easily matching more perfect distribution displays. We agree with the conclusions 

of research involving the mapping of shapes, histograms, and distributions (Scheaffer et al., 2004; 

Rossman & Chance, 2005); furthermore, this situation enabled students to see concepts such as 

variability of a distribution and center by expanding their thinking about distribution in their 

assumptions. 

It is impossible reason completely about distribution without considering its variability (Garfield & 

Ben-Zvi, 2008). In the second activity in our study, the students formed the conjecture models with the 

sample size they chose to reason about the variability of a distribution. Students decided on conjecture 

models based on the sample size, type of distribution, the multiplicity of data, and the number they 

randomly obtained. Bakker (2004b) claimed, in his growing sample activity, that students are better at 

predicting what will happen to the graph by showing that variability decreases as the sample grows and 

is more similar to the population. We initially told the students to estimate the minimum sample size, 

and we aimed to estimate the display generated by the addition of cases. Thus, we can argue that when 

students grew the sample themselves, they found that they did not need to know the size and population 
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distribution to notice that the variability decreased. This claim led us to think that students could make 

inferences about the population from the given sample. 

Furthermore, technological tools in students’ distribution modeling process allowed us to see their 

reasoning on the sample size (Mills, 2002). Therefore, we claimed that students who never changed the 

sample size were unwilling to take risks, while students who increased the sample size could not 

estimate the stacks of data. Students who were in this situation reasoned more roughly and superficially. 

These students might become more precise with a few, minor instructions. We can argue that the 

students could establish the link between the sample and variability, which was the focus of the third 

activity. Therefore, the activity of “discovering the distributions” could be a good teaching point to 

highlight the representativeness of the samples (Watson & Moritz, 2000). Besides, since there is no 

formal rule for normal, left- or right-skewed distributions in this activity, and because the activity was 

presented in a game-like manner, students could be motivated to participate and discover intuitively the 

distributions that Bakker (2004a) stressed in his study. 

In the third activity, we expected students to draw inferences to examine how they made sense of 

the distribution they created. Students who were able to construct the distribution in the conjecture 

model could compare the distribution of GM fish with normal fish by commenting correctly on the 

variability. While students commented on the variability of distribution, although they used the hat plot 

tool, they chose to explain the difference between the data and both distributions. They informally 

defined variability by their statements, such as that GM fish showed a more unstable form, an increase, 

or a decrease. We can say that the students had an understanding of variability in search of different 

regions by defining two different distributions. Lehrer and Schauble (2004) studied natural variability 

where children seek plateaus as low variability indices. The results from that study match our findings 

and support our claim. In contrast, students were unable to transcend their sense of variability. 

Therefore, it is necessary to approach sampling probabilistically in order to see the distribution as a lens 

through which to view the variability, as explained by Wild (2006). We recognize that students lack an 

understanding of variability when comparing the distributions of various samples obtained via 

sampling. According to Shaughnessy’s (2019) findings in his “candy sampling task”, probabilistic 

thinking may be beneficial for comprehending variability. This finding could be explained by the fact 

that our participants have not received formal instruction in probability, and thus their probabilistic 

reasoning is limited. Garfield et al. (2008) emphasized this point by highlighting the need for students 

to focus on the nature of variability via sampling. 

We examined students’ reasoning with sample distributions to make sense of distribution for 

different activities. We noticed that students thought more deeply about their distributions using the 

averages, ruler, divider, and line plot tools of TinkerPlotsTM in the data models they dealt with the 

sampler tool. Although the tools they used made it easier to understand their data models, their 

inferences were valuable. We thought that Hakan made his inference for 15 fish in Figure 8 during the 

data modeling process by associating it with the tools he used. Hakan sought variability between the 

data while making sense of the representation of the data and brought the concept of variability to the 

fore. The concept of distribution forms the basis of nearly all statistical reasoning methods related to 

variability (Wild, 2006). Although participants were at the university level in studies on variability, they 

were shown to pay attention to the variability criterion of data and expressed their representations over 

the variability it represented (delMas et al., 2007; Konold & Pollatsek, 2002).  

The students drew inferences on sample-population balance by comparing their results with 

different samples in the sampler tool with conjecture models and data models. They conveyed their 

inferences with different statistical concepts. These concepts were in the form of the center, variability, 

or spread of distribution display. We cannot argue that students made right or wrong inferences based 

on the basic concepts they addressed, but we observed how students wanted to see them in distribution. 

Aylin compared the randomly generated sample distributions and the center of the population when 

making an inference, as she only saw the center of the distribution. Since the centers of the samples 

created varied, Aylin did not trust that all data would be represented. Fatih struggled because he often 

used categorical instead of quantitative variables. This student made inferences by creating the least 

number of different distributions among the students and selecting the tool less. Despite this, he gave 

the correct answer as he saw the variability of different sample distributions. Hakan made inferences 

by associating them with both centers and variability of the different distributions he created. Hakan 

experienced the representability of the display based on the sample size, understanding how little or 
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much the sample changed the center of random data, and the relationship between the sample and the 

population by making sense of the distribution displays. 

 

6. CONCLUSION AND IMPLICATIONS 

 

We have investigated the students’ modeling processes through the RISM framework by comparing 

the data model with the conjecture model and the pros and cons of the inferences obtained in this 

dynamic process. While students could easily make their distribution displays in TinkerPlotsTM, they 

could not accurately relate these models to the real-world settings. The reason could be because they 

did not have inferences on statistical concepts in their modeling processes.  

It is becoming increasingly important to focus on the best ways to use technological tools in the 

classroom, as we concluded in this study. Examples of some of the practical uses of technology are seen 

in statistics classes, and such tools enable students to answer, “What happens if?” type questions while 

students follow the changes seen on their screen (Chance et al., 2007). The students’ statistical modeling 

process is complicated because of the simultaneous use of real-world problems and the TinkerPlotsTM 

software in the activities. TinkerPlotsTM provides students with the opportunity to see the connection 

between the data and chance. The activities, including some tasks such as repeated measures, can help 

students to see the idea of data as signal and noise (Biehler et al., 2012). Biehler et al. also claimed that 

students can understand statistical concepts more quickly if they deal with computation or graphing less 

via the software. 

To understand the data, the students experienced their relationship with the basic concepts of graphs, 

distributions, and statistics, not through the eyes of a statistician but purely for informal reasoning. 

However, students cannot use only informal reasoning to understand the data. They need to experience 

the relationship between the data display, distribution, and fundamental statistical concepts to reach 

informal reasoning. Therefore, students do not have to learn statistical concepts in a specific order, and 

what is essential is not the order of understanding statistical concepts, but the relationships of how 

students comprehend these basic concepts must take place in a particular order. Examining the students’ 

usage of the idea of distribution reveals several statistical concepts, such as variability and center, and 

cycles of feeling, understanding, and interpreting the distribution, based on our findings. According to 

Pfannkuch and Reading (2006), the distribution reasoning process should be investigated in the context 

of statistical inference, because it is essential for comprehending the statistical concepts and recognizing 

how reasoning is performed. Rumsey (2002) also claimed that statistical reasoning and thinking are at 

a higher level than statistical competence, which means that the level of thinking, rather than 

knowledge, is essential. 

Students can make inferences about the basic concepts of statistics if the guidelines and questions 

enable them to reason about statistical activities. Because the students’ comparisons of the conjecture 

and the data models they created will cover the entire activity, the cycle between the order, relationship, 

and usage of statistical concepts are complex. For instance, Garfield and Ben-Zvi (2005) concluded in 

their review for variability that “understanding variability is much more complex and difficult than 

what the prior literature suggests” (p. 93). 

The students’ probabilistic approach to distribution through their self-inference during the whole 

modeling process will enable them to make better sense of the complex statistical concepts they will 

learn at a more advanced level. In summary, the discussion shows how students comprehend basic 

statistical concepts such as variability, center (mean, mode, median), and shape of a distribution in an 

empirical distribution generation process and how they feel about theoretical distributions (Garfield & 

Ben-Zvi, 2008). This relationship coincides with the transition from their conjecture models to data 

models that stands out in the RISM framework (Dvir & Ben-Zvi, 2018). With the activities implemented 

in this study, students’ modeling skills improve more effectively when they make sense of statistical 

concepts. Therefore, we think that it would be meaningful and valuable to provide conceptual 

knowledge at an early age so that students can perform data analysis and statistical inference 

simultaneously during statistics teaching. 
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