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ABSTRACT 

 
Statistics education reform efforts emphasize the importance of informal inference in the 
learning of statistics. Research suggests statistics teachers experience similar difficulties 
understanding statistical inference concepts as students and how teacher knowledge can 
impact student learning. This study investigates how teachers reinvented an informal 
hypothesis test for categorical data through the framework of guided reinvention. We 
describe how notions of variability help bridge the development from informal to formal 
understandings of empirical sampling distributions and procedures for constructing 
statistics and critical values for conducting hypothesis tests. A product of this paper is a 
hypothetical learning trajectory that statistics educators could utilize as both a 
framework for research and as an instructional tool to improve the teaching of hypothesis 
testing.  
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Test statistic; Hypothetical learning trajectory 
 

1. INTRODUCTION 
 
The American Statistical Association’s (2012) Guidelines for Assessment and Instruction 

in Statistics Education (GAISE) report outlines a progressive approach toward the teaching 
and learning of introductory statistics. According to the GAISE report, the goal of an 
introductory statistics course is “for students to focus more on conceptual understanding and 
attainment of statistical literacy and thinking, and less on learning a set of tools and 
procedures” (p. 10). GAISE advocates a focus on teachers as facilitators in a pedagogical 
process that encourages student construction of fundamental statistical concepts and methods. 
One of these fundamental concepts is that of statistical inference.  

Statistical inference is the science of using sample information to draw conclusions 
regarding the population (Brase & Brase, 2012). GAISE suggests students should understand 
the basic ideas of statistical inference, which include: “the concept of a sampling distribution 
and how it applies to making statistical inferences based on samples of data (including the 
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idea of standard error)” and “the concept of statistical significance, including significance 
levels and p-values” (ASA, 2012, p. 12). 

Hypothesis testing is an essential component of statistical inference. Hypothesis testing 
methods are employed in all fields (e.g., education, sciences, medicine, social sciences, 
business, etc.) that utilize data (Bluman, 2012). Concepts of hypothesis testing, therefore, 
should be a priority for statistics education researchers. In addition, teacher knowledge has a 
direct impact on student learning (Ball, Hill, & Bass, 2005; Hill, Sleep, Lewis, & Ball, 2007; 
Liu & Thompson, 2009; Shulman, 1986); thus, statistics education researchers must also 
understand the development of teachers’ knowledge of hypothesis testing. One particularly 
important area of research is analyzing how to bridge the gap between intuition and prior 
knowledge with formal statistical concepts. Therefore, the goal of this paper is to address this 
gap by investigating these research questions:  

1. How do in-service and pre-service teachers (IPSTs) move from informal intuitions 
toward more formal concepts of hypothesis testing for categorical data using a guided 
reinvention approach? 

2. What role does IPSTs’ intuition about variability play in constructing empirical 
sampling distributions and developing  procedures for finding a statistic and critical 
value used in a hypothesis test for categorical data? 

This paper is organized into six main sections. In the first section, related research 
literature on students’ and teachers’ understanding of hypothesis testing is reviewed. Second, 
instructional strategies designed to improve the teaching of hypothesis testing are 
synthesized. Third, the framework of guided reinvention and how it led to a preliminary 
hypothetical learning trajectory (HLT) for supporting teachers’ reinvention of a hypothesis 
test for categorical data is explicated. Fourth, the teaching experiment, focused on hypothesis 
testing in a statistics classroom for IPST, is explained. Note that for the remainder of this 
paper IPSTs are referred to as students for ease of reading. Fifth, data from the teaching 
experiment with respect to how these data addresses the research questions are shared. Lastly, 
this paper concludes with a discussion of results and suggestions for future research. 

 
2. LITERATURE REVIEW 

 
2.1.  STUDENT AND TEACHER UNDERSTANDING OF HYPOTHESIS TESTS 

 
A review of the literature indicates that students struggle to understand concepts of 

hypothesis testing (Batanero, 2000; Batanero & Diaz, 2006; Castro Sotos, Vanhoof, 
Noortgate, & Onghena, 2007; Falk, 1986; Garfield & Ben-Zvi, 2008; Haller & Krauss, 2002; 
Thompson, Liu, & Saldanha, 2007; Vallecillos, 2002; Vallecillos & Batanero, 1997). Some 
research has focused on students’ misinterpretation of p-value and level of significance 
(Batanero, 2000; Batanero & Diaz, 2006; Garfield & Ben-Zvi, 2008). Batanero (2000) 
observed that students could calculate a correct p-value and correctly conclude whether to 
reject or fail to reject the null hypothesis based on their calculated p-value. Yet, the students 
in her study could not adequately interpret a p-value. Vallecillos and Batanero (1997) 
revealed that students have difficulties identifying the null and alternative hypotheses when 
confronted with contextual problems where the hypotheses are not clearly delineated.  

Statistics education researchers have also found that teachers struggle to understand 
hypothesis testing (Heid, Perkinson, Peters, & Fratto, 2005; Thompson, Liu, & Saldanha, 
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2007). Thompson and his colleagues investigated eight high school teachers in a professional 
development seminar. They noted that some of the teachers appeared to understand the logic 
of hypothesis testing, but could not appropriately identify problems that could be answered 
through hypothesis testing. Furthermore, some teachers in the study did not show a strong 
understanding of the role sampling distributions play in hypothesis testing. This phenomenon 
was also observed in a study conducted by Heid and her colleagues (2005), who investigated 
eighteen prospective secondary teachers enrolled in a course designed to broaden 
understanding of statistical concepts. In their research, they discovered that while some 
prospective teachers could accurately describe and construct a sampling distribution, the 
teachers were inconsistent when trying to articulate distinctions between distributions of 
samples, populations and sample means. Heid and her colleagues suggested that the teachers’ 
inability to make these important distinctions led them to reason deterministically rather than 
probabilistically when applying sampling distributions to real data. This is an important point 
because concepts of sampling distributions are important prerequisite knowledge for a deeper 
understanding of hypothesis testing.  

The research literature reviewed here reveals challenges students and teachers have 
understanding p-values, level of significance and sampling distributions. There is little 
research studying how students or teachers might come to derive a test statistic from 
observed sample data and construct a distribution of statistics generated under a null 
hypothesis. Nor is there much research on how students or teachers might conceive of the 
relationship between these ideas and inferences made through hypothesis testing. This 
research aims to make headway into these important ideas. To begin, current pedagogical 
approaches suggested by statistics education researchers are reviewed.  

 
2.2.  IMPACT OF RESEARCH ON PEDAGOGICAL APPROACHES 

 
Traditional pedagogical approaches to the teaching of hypothesis testing have focused on 

formal approaches such as t-tests and z-tests. However, in the past decade, statistics education 
researchers have developed new approaches to teach statistical inference that are designed to 
improve student understanding. Three interrelated strategies have received the bulk of the 
attention: emphasizing (1) sampling distributions, (2) simulations, and (3) informal inference. 

The first strategy suggested by researchers is emphasizing the importance of sampling 
distributions in the learning of statistical inference (Batanero, 2000; Garfield & Ben-Zvi, 
2008; Heid et al., 2005; Lipson, 2003; Liu & Thompson, 2005; Makar & Confrey, 2004; 
Saldanha & Thompson, 2002). These researchers have argued that because sampling 
distributions form the basis for understanding the relationship between samples and 
probability in statistical inference, educators should emphasize sampling distributions as a 
core component of hypothesis testing during instruction.  

The second strategy suggested by researchers (e.g., Chance, delMas, & Garfield, 2004; 
Chance, Ben-Zvi, Garfield, & Medina, 2007; delMas, Garfield, & Chance, 1999; Erickson, 
2006; Garfield & Everson, 2009; Garfield & Ben-Zvi, 2008; Heid et al., 2005; Zieffler, 
Garfield, delMas, & Reading, 2008; Zieffler, Garfield, Alt, Dupuis, Holleque, & Chang, 
2008) is having simulations serve as an important tool in teaching hypothesis testing because 
they provide a visual (via a computer) and/or physical experience (via hands-on simulations 
using dice, coins, spinners, etc.) of the sampling process as a means to generate an empirical 
sampling distribution. Chance, delMas, and Garfield (2004) have asserted that simulations 
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can build foundational ideas of sampling distributions by allowing students to explore 
intuitively how samples and sampling distributions behave with regard to a population.  

The third strategy suggested by researchers is that instruction should begin with an 
informal approach to statistical inference before introducing formal statistical inference (e.g., 
Chance & Rossman, 2006; Erickson, 2006; Garfield & Ben-Zvi, 2008; Garfield, delMas, & 
Zieffler, 2012; Rubin & Hammerman, 2006; Weinberg, Wiesner, & Pfaff, 2010; Zieffler, 
Garfield, delMas, & Reading, 2008). By building on informal approaches, educators can 
better support students’ learning of statistical inference concepts because new knowledge is 
constructed from the learner’s prior knowledge, and thus making formal procedures more 
accessible.  

The three main strategies outlined in the research literature are interrelated and mutually 
supportive. Our synthesis of the literature (in particular, Erickson, 2006; Garfield et al., 2012; 
Chance & Rossman, 2006; Liu & Thompson, 2005; Makar & Confrey, 2004; Weinberg, 
Wiesner, & Pfaff, 2010; Zieffler et al., 2008) suggests these three strategies support a 
particular pedagogical approach where students begin their study of statistics by experiencing 
the sampling process (physically or electronically) to generate empirical sampling 
distributions. Students then discuss unusual samples using an empirical sampling distribution 
as a tool for a statistical argument. Simulations are encouraged because they allow inferences 
to be made without probability theory and assumptions about types of probability 
distributions. Terms such as unusual, rare, typical, and representative replace the formal 
language of p-value, test statistic, and significance level at the beginning of instruction. 

Utilizing this new pedagogical approach makes statistical discussions accessible to 
students because words like unusual have everyday meaning. Activities are designed to build 
on students’ prior knowledge of these words through statistical discussions where students 
construct methods of analyzing the unusualness of sample data. Instruction focuses on 
building connections between empirical sampling distributions, the unusualness of a statistic 
obtained from the observed data and building inferences from this information. Unusualness 
is reflected by the probability of an observed statistic (i.e., the likelihood of occurrence of an 
observed statistic ranging from expected to unexpected), which is dependent on the position 
of the statistic within an empirical sampling distribution based on the null hypothesis. 
Instruction, with a focus on informal ideas, may successfully support students in thinking 
about the unusualness of an observed statistic on a sliding scale, ranging from representative 
(highly probable) to unusual (not very probable). Students can use the graph of an empirical 
sampling distribution to see that the tails of the distribution represent areas of unusual 
statistics while the middle region corresponds to representative statistics. Figure 1 illustrates 
a simulated empirical sampling distribution of sample proportions from a population of 
equally proportioned males and females and highlights the unusualness (or 
representativeness) of an observed sample proportion of 0.70 males by its position in the 
empirical sampling distribution. 

Based on this particular pedagogical strategy, we outline an informal hypothesis testing 
(IHT) approach as a 7-step process: (1) Begin with a research question and state the relevant 
hypotheses; (2) Collect relevant data; (3) Generate/Design a procedure for determining a 
statistic for the sample based on the research question; (4) Generate an empirical sampling 
distribution (based on the null hypothesis) through simulation; (5) Determine the unusualness 
of the observed statistic in relation to the empirical sampling distribution based on the null 
hypothesis; (6) Conclude the results of the hypothesis test; and (7) Interpret the results of the 
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test. It is important to acknowledge that students’ prior knowledge must include an 
understanding of simulations and graphs because these concepts support the creation and 
discussion of empirical sampling distributions in IHT. Table 1 presents an example of the 
IHT where the research question of interest is whether College A has more male students 
than female students. 
 

 
 

Figure 1. Relationship between population, sample, and sampling distribution. 
 
We conjecture that through carefully designed activities, using simulations, IHT and 

incorporating the framework of guided reinvention, students’ prior knowledge and intuition 
can be capitalized on so that students can reinvent fundamental concepts of hypothesis 
testing. 

 
 

2.3.  REALISTIC MATHEMATICS EDUCATION AND GUIDED REINVENTION 
 
According to Gravemeijer (2004), the problem with the transmission model of teaching 

(traditional lecture) is that mathematics in general does not make sense to students because 
what is common sense for a mathematician is not common sense for a student. A core 
principle of realistic mathematics education (RME) is that mathematics should be learned 
naturally through invention and discussion as students are involved in solving mathematical 
problems that are realistic to them. He argues that in order to foster rich student learning 
opportunities, educators must take the approach of helping students (re)invent significant 
mathematics through a process of guided reinvention. Guided reinvention is a component of 
RME that emphasizes the development of tasks and pedagogical practices that allow 
opportunities for students’ reinvention of mathematical concepts. This is done by having 
teachers establish a culture of inquiry within the mathematics classroom where the teacher’s 
role is to present a relevant task, ask questions and lead discussion to facilitate students’ 
ability to construct meaningful mathematics. The classroom is student-focused. Student work 
and student responses become the main topics of discussions. 
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Table 1. Steps of informal hypothesis testing 
 

Hypothesis Test Steps Explanations / Example 

Step 1.  
Begin with research 
questions and state 
relevant hypotheses. 

Students begin with a research question and state hypothetical claims 
based on their research question.  
Example: Research Question: Are there more male students than female 
students at College A? 
Null Hypothesis: The proportion of males is 0.50. 
Alternative Hypothesis: The proportion of males is greater than 0.50. 

Step 2.  
Collect relevant data. 

Students collect relevant data that would provide evidence for their claims. 
Example: To answer the research question, students either collect data or 
are given sample data about the gender of students at College A. 

Step 3.  
Construct a procedure to 
find a statistic; use it to 
measure unusualness of 
sample data. 

Students construct a numerical method to represent a sample’s 
unusualness in light of the null hypothesis. 
Example: statistic = sample proportion. 

Step 4.  
Generate an empirical 
sampling distribution 
based on null hypothesis. 

Students use a simulator to generate an empirical sampling distribution of 
statistics drawn from a probability distribution that represents the null 
hypothesis. 
Example: Using a simulator, generate multiple samples of size 100 from a 
population distribution representing 0.50 males. Students graph the 
sampling distribution of sample proportions.  

Step 5.  
Determine the likelihood 
of an observed sample. 

Determine the position (and thus likelihood) of the observed sample’s 
statistic relative to the sampling distribution generated in step 4. 
Example: If a sample with a proportion of 0.70 males is observed, then 
determine its likelihood using the sampling distribution generated in step 
4. If the observed sample proportion is unusual, the sampling distribution 
would show a distribution that tails off around 0.70.   

Step 6.  
Conclude the results of 
the hypothesis test. 

Based on the results of step 5, the students determine whether there is 
sufficient evidence to reject the null hypothesis. If the observed statistic is 
highly unusual then there is evidence to reject the null hypothesis. If the 
observed statistic is not unusual then we fail to reject the null hypothesis. 
Example: In the previous step, we have shown that getting a sample 
proportion of 0.70 males is unusual. Thus, there is sufficient evidence to 
reject the claim that the proportion of males in the population is 0.50. 

Step 7.  
Interpret the results. 

Interpret the decision based on the results of step 6.  
Example: Since the sample proportion of 0.70 males has a small chance of 
occurring assuming the population proportion of males is 0.50, then we 
can claim that there are more males in the college population. 

 
The RME design heuristics rely heavily on planning. Preparing an instructional sequence 

involves developing a hypothetical learning trajectory (HLT) for the class as students 
participate in activities. “The notion of a hypothetical learning trajectory entails that the 
teacher has to envision how the thinking and learning, in which the students might engage as 
they participate in certain instructional activities, relate to the chosen learning goal” 
(Gravemeijer, 2004, p. 8). The components of a HLT consist of establishing learning goals, 
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envisioning students’ mental processes and designing instructional tools (Gravemeijer, 2004). 
Instructional sequences can be divided into stages in order to achieve sub-goals, with the 
intention of satisfying overall learning goals. The teacher must take the perspective of the 
student, envisioning the mental activities of students as they participate in instructional tasks 
so that the teacher can plan for possible student responses and developing conceptions. For 
instance, teachers must consider what instructional tools, tasks and questions would be most 
helpful in developing student thinking. Since curriculum design is not always perfect, 
contingencies must also be planned in case students stray from the conjectured HLT. 

Mathematics educators, and to a lesser extent, statistics educators (e.g., Bakker, 2004; 
Cobb, McClain, & Gravemeijer, 2003; Doorman & Gravemeijer, 2009; Gravemeijer & 
Bakker, 2006; Gravemeijer & Van Galen, 2003; Larsen, Johnson, Rutherford, & Bartlo, 
2009; Oehrtman, Swinyard, Martin, Hart-Weber, & Hah Roh, 2011; Swinyard, 2011; Van 
Etten & Adendorff, 2007) have used RME as a lens for designing teaching experiments to 
study the learning processes of students. In the framework of RME, realistic mathematical 
problems are contextually and intellectually accessible from the perspective of students based 
on their prior knowledge and intuition. Using RME and IHT generates avenues for educators 
to support the learning of hypothesis testing by building on the learner’s intuition and prior 
knowledge. A primary conjecture of this study is that the instructional strategies outlined in 
the literature review could be enhanced with a RME philosophy as a means to investigate 
students’ development of hypothesis testing. This approach may yield new insights into the 
way students construct knowledge of hypothesis testing as well as provide empirical support 
for particular curricular approaches in the teaching and learning of hypothesis testing. 

 
 

3. METHODS 
 
Using the framework of RME and an IHT approach to the study of hypothesis testing, we 

conducted a teaching experiment at a large urban university in the Pacific Northwest. This 
section outlines our methodology beginning with a description of the participants, followed 
by a description of our HLT, including the tasks used in the teaching experiment and how 
RME served as an important theoretical lens from which we analyzed our results. 

 
3.1.  PARTICIPANTS 

 
The study was conducted in a statistics course for teachers and had a prerequisite of an 

introductory statistics course. The class consisted of 13 graduate and upper division 
undergraduate mathematics students with a mix of pre-service and in-service teachers. 
Background information on the participants is provided in Table 2. All graduate students had 
bachelor’s degrees in mathematics. Twelve of the students allowed the research team to 
videotape and analyze their written work. Only one of the students requested not to be 
videotaped but allowed his written work to be used as data. The research presented in this 
paper is based on classroom discussion related to hypothesis testing activities. Therefore, the 
student that did not wish to be videotaped is excluded from this discussion. 
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Table 2. Information on participants’ backgrounds  
 

Name  Educational Status 

Amy Masters of Science (MS) in Mathematics for Teachers (major) and graduate Teaching 
Assistant 

Bernard Undergraduate Mathematics (major) 

Charles Undergraduate Mathematics (major)  

Danny MS in Mathematics for Teachers (major) 

Darla Undergraduate Mathematics (major) 

Eddie MS in Mathematics for Teachers (major), MS in Mathematics (major), and graduate 
teaching assistant 

Jonah MS in Mathematics (major) and graduate teaching assistant 

Margaret Undergraduate Mathematics (major) 

Martha MS in Mathematics for Teachers (major) and pre-service teacher 

River MS in Mathematics for Teachers (major) and graduate teaching assistant 

Rory Undergraduate Mathematics (major) 

Rose MS in Mathematics for Teachers (major) and in-service teacher 

 
The main topics of the course included sampling, sampling distributions, confidence 

intervals and hypothesis testing. The design of the course followed an RME framework 
where classroom activities focused on supporting students’ reinvention. The class met twice a 
week for 75-minute sessions over a ten-week period. 

The research team consisted of the principal investigator (the second author) who was the 
primary instructor for the course, and two graduate research assistants. During classroom 
sessions on hypothesis testing, the first author (graduate research assistant) developed the 
instructional sequence with consultation from the research team and instructed the class 
during this sequence. The role of the instructor was to lead class discussions centered on the 
instructional activities, to ask questions and to use student solution strategies as the basis for 
more in depth discussion of statistical concepts. The two assisting researchers videotaped 
classroom sessions, asked clarifying questions in small and large group discussions, and led 
some of the classroom teaching sessions. After each session, the research team met to discuss 
the progress of the teaching experiment. Meetings consisted of evaluating learning outcomes 
of past teaching episodes, and designing new tasks for the upcoming teaching cycles.     

In the first half of the course, students were introduced to activities centered on sampling 
distributions and simulations. The course design emphasized sampling using computer 
simulators and physical sampling tools (e.g., buckets of beans, slips of papers, spinners, etc.) 
to help strengthen student conceptions of sampling distributions. Following the class sessions 
on sampling distributions, the teaching experiment progressed towards statistical inference 
topics. The tasks involving statistical inference focused on building informal and formal 
knowledge of confidence intervals and hypothesis tests. The research reported here focuses 
on the results of the classroom teaching experiment centered on the students’ reinvention of 
an informal hypothesis test for categorical data. 
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3.2.  INITIAL HLT: DEVELOPING AN INFORMAL HYPOTHESIS TEST FOR 
CATEGORICAL DATA 
 
A primary goal of the study was to analyze how guided reinvention could be used to 

investigate students’ development of a hypothesis test for categorical data. The activity can 
be approached using a chi-squared goodness-of-fit hypothesis test. However, because this 
teaching approach utilized the theory of guided reinvention, we were not concerned if 
students arrived at the actual chi-squared goodness-of-fit test, only that they developed a 
meaningful informal hypothesis test (IHT) for categorical data. The choice of developing an 
activity where the problem could be solved using a chi-squared goodness-of-fit test was 
because of the intuitive nature of the test and the shape of the sampling distribution 
associated with the test. Prior to the start of the hypothesis test activities, these students spent 
significant time working with approximately normal-shaped sampling distributions. We 
wanted to observe how students would react when working with sampling distributions that 
were not normally distributed. In addition, we were interested in how students would address 
a problem that contained four categories in the population, rather than a population that could 
be analyzed using a single proportion (i.e., two categories). Given that these students had 
completed introductory statistics, they would have already seen hypothesis testing problems. 
Also, in the weeks leading up to the hypothesis test activities, students revisited sampling 
distribution concepts, and the idea of using sampling distributions as a tool to make informal 
inferences about the unusualness of an observed statistic for a single population proportion.  

Prior to designing the instructional goals and sequence for the teaching experiment the 
research team hypothesized two initial strategies of students with a basic introductory 
statistics background. One student strategy we envisioned: students (forgetting or perhaps 
never having seen the chi-squared hypothesis test from their prior introductory statistics 
course) would consider each category of the population separately. The second student 
strategy we envisioned: students would create a procedure to summarize the observed data to 
generate a statistic (perhaps recalling a procedure from their prior introductory statistics 
course such as the chi-squared hypothesis test). We illustrate these two strategies with an 
example research question: Is a university’s student population equally distributed among 
freshman, sophomores, juniors and seniors?  

In the first strategy, a student would generate four empirical sampling distributions of 
proportions for individual categories. Strategy 1, shown in Figure 2, illustrates the results of 
generating four empirical sampling distributions, one per category. We hypothesized that 
Strategy 1 might be intuitively appealing for students coming from introductory statistics 
where most of the class focuses on one-population hypothesis tests, but it turns out to be 
theoretically and intuitively problematic. Determining unusualness for the observed sample 
requires four statistics, one for each category in the sample, and each statistic needs to be 
compared to its respective empirical sampling distribution. We assumed once students 
attempted to make comparisons with four distributions, they would realize this strategy was 
not efficient. More importantly, Strategy 1 suffers from a misinterpretation of the Type-I 
error. In traditional hypothesis testing, the level of significance is set around a single 
sampling distribution. In IHT, the level of significance corresponds to the region of unusual 
statistics. If we set a 5% level of significance, then using four sampling distributions means 
setting a 5% level of significance per sampling distribution. As a result, the 5% level of 
significance is no longer the significance level for the problem as a whole.  
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Alternatively, Strategy 2, shown in Figure 2, uses one statistic to represent data from the 
observed sample, and this leads to a single empirical sampling distribution. This approach 
corresponds to traditional methods where a statistic is used to summarize sample information 
and a single empirical sampling distribution is produced under the null hypothesis. We 
anticipated at least one or two students would recognize the chi-squared nature of the 
problem and recall this strategy.  

 
 

 
 
Figure 2. Two sampling distribution strategies for a population with four categories. 

 
 
Our larger instructional goal was to get students to generate Strategy 2. This meant that 

instruction needed to support student construction of a single statistic for a sample of 
categorical data. Given the mathematics background of these students, we assumed that if no 
one initially recalled a chi-squared test then at least a few students would construct a viable 
alternative method (though we did not know in advance what that method might be). We 
hypothesized that once students arrived at Strategy 2, or a viable alternative strategy that 
produced a statistic for the observed sample, discussion of the statistic’s unusualness would 
follow the IHT approach (recall Table 1). We hypothesized that since students had already 
spent time doing this with a single proportion that they would be comfortable applying the 
same tools to a slightly new situation with a population of four categories. 
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3.3.  BUILDING ON STUDENTS’ PRIOR KNOWLEDGE TO REFINE HLT 
 
The design of the HLT and subsequent activities were constructed with the expectation 

that students would draw upon their prior knowledge of hypothesis testing, sampling 
distributions, simulations, and variability within a sample and between samples in an 
empirical sampling distribution. A primary conjecture of our teaching experiment was that 
instruction could begin with students’ intuition about variability in a sampling situation, 
which would transition to students’ quantifications of variability in a sampling situation, and 
then finally to student constructed procedures for finding a statistic to quantify the 
unusualness of sample data. Students would also generate an empirical sampling distribution 
based on the null hypothesis through simulations (building on prior knowledge of 
constructing sampling distributions from simulations in other situations). Finally, instruction 
would support the position of an observed sample’s statistic in an empirical sampling 
distribution as a tool for making a statistical inference. Erickson (2006) recommended this 
instructional approach, suggesting that students should be given the opportunity to construct 
methods to summarize numerically the unusualness of an observed sample and generate 
empirical sampling distributions as a vehicle to discuss unusualness. Table 3 outlines the 
approach designed to support students’ development of Strategy 2 in Figure 2. 

 
Table 3. HLT: Learning activities and learning goals 
for constructing a hypothesis test for categorical data 

 
Stage Instructional Task Learning Goals 

1 

Given a jar that contains four colors of beans 
in equal proportions (0.25 red, 0.25 white, 
0.25 black, 0.25 brown), what would you 
expect the proportion of colors to be in a 
sample of 100 beans? 

Explicit reasoning about the null hypothesis 
under an assumption that a jar contains equal 
proportions of black, brown, red, and white 
beans. 

2 
In your group, decide on a representative or 
usual range for the number of brown beans in 
a sample of 100.  Repeat for other 3 colors. 

Quantify representative intervals for each 
color. Consider expected variability from 
sample to sample. 

3 

Consider 8 different samples (see Table 4 for 
sample information) assumed to be from the 
jar of beans in equal proportions of red, 
white, black, and brown. Rank the samples 
from most to least unusual. 

Construct methods for ranking the 
unusualness of the 8 different samples. 
Students quantify unusualness based on their 
methods. 

4 

Using the “best” (as decided by the class) 
method from the ranking task and the null 
hypothesis, generate a sampling distribution 
to model possible sample statistics from the 
assumed population. 

Construct a simulation to model the 
population under the null hypothesis. Have 
class discussion on what the data values 
represent in the sampling distribution 
generated by the simulation. 

5 

Using the “best” method, compare the 
statistics constructed from the ranking task 
(Stage 3) to the sampling distribution 
constructed in Stage 4. 

Determine a cutoff value for unusual versus 
representative samples and relate that value 
to an observed statistic. Make inferences 
based on location of the observed statistic 
within an empirical sampling distribution. 
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The context of the activity centers on a jar of beans with 4 different colors. This context 
was chosen because students had already worked with bean tasks in their previous sampling 
distribution activities (e.g., physically sampling from a bucket containing a population of two 
colors of beans: black and white). The new bean activity transitioned to a population 
consisting of four colors of beans. Stage 1 began with student discussions on the underlying 
hypothesis for the bean task. In Stage 2, students were asked to generate an interval for the 
number of brown beans in a sample of 100 that would be representative. The choice of which 
color to create a representative interval for is arbitrary since the jar contains equal proportions 
of red, brown, black, and white beans. This task served two underlying purposes. First, the 
intervals allowed the research team to gain information regarding the students’ initial notions 
of variability in this context. We conjectured that students would intuitively generate a 
symmetric interval centered at 25 (e.g. 20-30 or 15-35) in which they would expect all brown 
(or black or red or white) beans should fall since the population is assumed to be equally 
distributed. We anticipated any justifications for the interval would be subjective, because 
each student likely has different perceptions on the expected variability of colors in any given 
sample. Second, we wanted to use student-generated intervals as a place to begin discussions 
for determining a cutoff value for quantifying unusualness in Stage 5. 

Stage 3 of the teaching experiment was designed to facilitate students’ construction of a 
statistic through student-generated methods of ranking samples from most to least unusual 
(Table 4 shows the sample information for the 8 samples). We anticipated that this would be 
a pivotal stage of the teaching experiment, supporting students’ construction of a single 
statistic rather than four statistics for each color as noted in Strategy 1, Figure 2. 

We conjectured that students would use the interval generated in Stage 2 as a tool to 
measure unusualness by counting the number of colors that fell within their expected interval. 
For instance, if students considered the interval (20, 30) to be their “expected” interval for 
each of the four colors, then they would rank the samples according to how many colors fell 
within this interval. In this example, Sample A would be ranked as the most representative 
because all the color counts are within the expected interval. Whereas Sample G would be 
ranked least representative because three of the color counts (black, red, and brown) are 
outside the expected interval. Anticipating some students would develop the strategy outlined 
above, the research team intentionally constructed samples to result in ties (e.g., Sample E  

 
Table 4. Table of beans (sample size n = 100) provided for the ranking exercise 

 

Sample Count of Black Count of Red Count of White Count of Brown 

A 23 27 25 25 

B 18 24 29 29 

C 18 23 28 31 

D 14 27 29 30 

E 20 14 36 30 

F 25 24 16 35 

G 10 15 23 52 

H 16 25 23 36 
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and H). We expected that the discovery of ties would cause cognitive conflict for the 
students, leading them to construct more refined methods of determining unusualness. 

Because all the students had basic statistics and strong mathematics backgrounds, we 
expected them to develop methods to fix “ties.” Specifically, we expected students to develop 
methods that computed the difference between the observed colors (the sample’s distribution) 
and the expected colors (assumed distribution based on an equal proportion of each color). 
For example, we anticipated that students would make connections to the concepts of 
standard deviation and variance – thus, developing a formula similar to a chi-squared statistic 
(see Figure 3). 

 

 

 
Figure 3. Hypothesized student-constructed procedure for a population with four categories 

that are equally proportioned. 
 
Once students generated a method for ranking the unusualness of the samples, the 

teaching experiment was designed to transition them toward generating an empirical 
sampling distribution based on the null hypothesis (Stage 4) where the elements of the 
sampling distribution would consist of the statistic generated in Stage 3 (hopefully a 
‘modified chi-squared’ as in Figure 3 or an actual chi-squared). Discussions in class during 
this stage included: (1) the meaning of points in the sampling distribution; (2) how the null 
hypothesis was related to the generated empirical sampling distribution; (3) the relationship 
between the empirical sampling distribution and the student constructed statistic; and (4) the 
shape of the sampling distribution. We anticipated discussion around the shape of the 
sampling distribution to be challenging because of the right-skewed shape. We also expected 
students to struggle identifying the peak of the sampling distribution. For a chi-squared 
distribution, the peak is dependent on the degrees of freedom. However, for the purposes of 
our teaching experiment, we conjectured that through simulations students could visually 
explore the properties of the empirical sampling distribution they generated. 

Stage 5 was designed to create an explicit discussion of the unusualness of sample 
statistics through an investigation of the correspondence between their initial interval (Stage 
2), their statistic generated from their work in Stage 3 and their empirical sampling 
distributions (i.e., Stage 4). For example, if the students decided on intervals of (20, 30), then 
the maximum difference between the observed and expected values for each color bean 
would be 5. Squaring each value of 5 per color and summing would result in a value of 100 
(Figure 4). The value 100 could be used as a cutoff score, the value used to distinguish 
unusual versus representative statistics in the sampling distribution. Finally, we hypothesized 
that the class could then compare the samples given in the ranking task and discuss the 
likelihood those samples came from a population with an equal proportion of black, brown, 
red, and white beans. Students could then make informal inferences through a consideration 
of the sampling distribution generated under the null hypothesis and their quantification of 
the unusualness of an observed sample statistic. 
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Figure 4. Relationship between interval, cutoff scores, and sampling distribution. 
 

4. RESULTS 
 
Through the instructional strategies outlined in the methods section, the research team 

gathered empirical evidence of students constructing an informal hypothesis test for 
categorical data (close to that of a chi-squared goodness-of-fit test). The methodological 
approach was valuable for allowing us deeper insight into the role variability played in these 
students’ developmental processes. The analysis of the teaching episode revealed particularly 
important moments in students’ development of a procedure for constructing a statistic for 
categorical data from Stage 3 through Stage 5. Therefore, our results focus on Stages 3-5. 
Five different student methods are presented in the results. The section will culminate in a 
revised HLT (based on the activities utilized in this teaching experiment) for students’ 
reinvention of an informal hypothesis test for categorical data.  

 A brief comment about the results of Stages 1-2 is required before delving into the 
results of Stages 3-5. As anticipated by the research team, students provided very informal 
representative intervals for the number of brown beans (or black or red or white) in a sample 
of 100 beans. After each small group discussed and decided on an interval for their group, the 
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whole class discussed possible intervals. The majority of groups gave intervals that stayed 
within plus or minus 5 from the value of 25. After much discussion, the class voted on one 
representative interval, (21, 29), and agreed that anything outside that interval would be 
considered unusual.  

 
4.1.  STAGE 3: GENERATING METHODS TO MEASURE UNUSUALNESS 

 
After agreeing on representative intervals of (21, 29) for each bean color, students were 

prompted to develop a procedure to quantify unusualness (through the introduction of the 
ranking task, recall Section 3.3). The research team identified four numerical methods 
constructed by the class to rank the samples based on unusualness. The four student-
generated methods we titled as: (1) general interval approach (GIA); (2) pairwise deviation 
approach; (3) range approach; (4) and the JC number approach. The first three methods 
shared similar and more intuitive ideas than the fourth method. In addition, the fourth method 
is the closest to the recreation of an actual chi-squared statistic. Therefore, this section 
summarizes the first three methods and the bulk of the Results section is devoted to the 
details of the JC number. To begin, Table 5 shows counts for red, black, white, and brown 
beans in samples A-H alongside the rankings for the different student generated approaches. 
There is no column for the GIA because none of the groups strictly used this method. Instead, 
students used GIA as a starting point, while also incorporating range or pairwise approaches 
to determine their rankings. 

 
Table 5. Ranking of samples based on IPSTs’ methods to measure unusualness 

 

Sample 
Count of 

Black 
Count of 

Red 
Count of 

White 
Count of 
Brown 

Pairwise 
Deviation 

Approach* 

Range 
Approach* 

JC #* 

A 23 27 25 25 1 1 1 

B 18 24 29 29 2 2 2 

C 18 23 28 31 3 3 3 

D 14 27 29 30 5 4 4 

E 20 14 36 30 7 7 6 

F 25 24 16 35 4 5 5 

G 10 15 23 52 8 8 8 

H 16 25 23 36 6 6 7 

*Numbers indicate the sample’s rank from least unusual (1) to most unusual (8). 
 
Method 1: General Interval Approach The GIA method counts how many of the four 

colors in each sample fall within (21, 29). For example, in Sample A all four colors fall 
within (21, 29). Thus, Sample A is ranked ‘most representative’. Whereas in Sample E, none 
of the counts fall within (21, 29) so that sample would be labeled as most unusual. Only one 
student in the class strictly used this method. Once she experienced a tie, she moved on to a 
new method. The excerpt below shows Martha’s iterative three-step approach that utilizes a 
GIA approach as an initial step. 
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Martha: Well, the way I did it, I had three steps. So the first thing I did was how many 
of each color of bean was in the range (21, 29). So was it four out of four, three 
out of four. … So first, how many of each are in the range? And then I ranked 
them by that. Then if there was a tie, how many beans was I away from twenty-
five across the board. And if that was tied, which it was for two of them, how 
many away from the range was I? ...Yeah, the last step was how many was I 
away from the range of twenty-one to twenty-nine? 

 
Most other students in the class took issue with Martha’s three-step approach because 

they felt that Sample G was more unusual than Sample E. River expressed the general sense 
of the class when she suggested that Sample G should be considered more unusual than 
sample E. 

 
River: That’s really interesting! … I really like that, but I have a really hard time 

with [Sample] G not being the last one because again, if we are going for, if 
all four of the true population is that they are even and one is ten and one is 
fifty-two.  That's about as least representative that you can possibly be. 

Instructor: So your problem is this fifty-two? 
River: Yeah, the fact that that method leads to that one [Sample G] not being the 

least of all of them… 
 
The fact that many students took issue with Martha’s method because her technique 

favored inclusion within the expected interval over a consideration of the distances of 
observed values from the expected value or expected range of values is a positive sign that on 
an intuitive level student were thinking about deviation from some expected value. As 
illustrated by Martha, the GIA was only a stepping-stone that led students to construct other 
strategies to replace GIA or use GIA as part of an iterative process. 

 
Method 2: Pairwise Deviation Approach Two student groups considered the distance of 

the two extreme values (of each sample) from the endpoints of the class-generated interval 
(21, 29). For example, in Sample G the two extreme values are the 10 black beans and 52 
brown beans. The absolute distance of 10 from 21 is 11 and the absolute distance of 52 from 
29 is 23. Students using this pairwise deviation approach considered those absolute 
differences as a way to determine unusualness. Table 6 highlights the pairwise deviation 
approach, showing the absolute differences between the minimum of a sample and the lower 
value of the interval (21) and the maximum of a sample and the interval’s upper value (29). 

The next excerpt highlights a pairwise deviation approach by one student who debated 
whether Sample D was more representative than Sample H (or vice versa). 

 
Bernard: The min minus... so if you have the range and 21 and 29, it would be twenty-

one minus the minimum. …Well, you want the absolute value or the 
maximum minus 29 and then whichever number is larger, that would be the 
error on that one and then you'd find the one that has, compare that to the same 
thing for another category. [36-29 and 21-16 for Sample H and 21-14 and 30-
29 for Sample D, finding the largest difference to rank them] 
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Table 6 reveals that Samples D and H have at least one absolute difference of seven, so in 
those instances students considered both difference values in the pair. Sample D is ranked as 
more representative than Sample H because the other difference value in Sample D is 1 
compared to 5 in Sample H. 

 
Table 6. Ranking of pairwise deviation approach 

 

Sample 
Count of 

Black 
Count of 

Red 
Count of 

White 
Count of 
Brown 21min max-29 

Rank (Pairwise 
Deviation)* 

A 23 27 25 25 2123=2 2729=2 1 

B 18 24 29 29 2118=3 2929=0 2 

C 18 23 28 31 2118=3 3129=2 3 

D 14 27 29 30 2114=7 3029=1 5 

E 20 14 36 30 2114=7 3629=7 7 

F 25 24 16 35 2116=5 3529=6 4 

G 10 15 23 52 2110=11 5229=23 8 

H 16 25 23 36 2116=5 3629=7 6 

*Numbers in the column indicate least unusual (1) to most unusual (8) 
 

 
Method 3: Range Approach Another student strategy was based on subtracting the 

minimum from the maximum value in each of the samples to rank unusualness. This strategy 
was another method considered by Amy’s group as shown in the excerpt below. 

 
Amy: Yeah, it’s similar to that [the GIA and the pairwise deviation approach]. I was 

looking at (Sample) D and seeing how my highest is thirty, for the brown. But 
my lowest is fourteen (for the black) so like.... That range has a really low 
range [30-14=16] compared to [Sample] H, where I have a high of 36, but a 
low of 16 [36-16=20], so I feel like it falls into a better range. 

 
Table 7 shows the ranking of samples according to the range approach. Those samples with 
the largest overall range would be more unusual. Thus, Sample H was more unusual because 
its overall range is 20 compared to a range of 16 for Sample D. The ranking of the overall 
range approach (see Table 7) has a similar ordering as the pairwise deviation approach, with 
the exception of Samples D and F. 
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Table 7. Ranking of range approach 
 

Sample 
Count of 

Black 
Count of 

Red 
Count of 

White 
Count of 
Brown 

Max Count –  
Min Count 

Ranking Range 
Approach* 

A 23 27 25 25 2723= 5 1 

B 18 24 29 29 2918=11 2 

C 18 23 28 31 3118=13 3 

D 14 27 29 30 3014=16 4 

E 20 14 36 30 3614=22 7 

F 25 24 16 35 3516=19 5 

G 10 15 23 52 5210=42 8 

H 16 25 23 36 3616=20 6 

*Numbers in the column indicate least unusual (1) to most unusual (8) 
 
Method 4: JC Number Jonah’s procedure compares the differences between the observed 

and the expected values per color, squares the differences, sums the squared differences of all 
four colors and finally takes the square root the sum to get a numerical value of unusualness 
for a sample (Figure 5). 

 

 

 
Figure 5. Jonah’s description of the JC number. 

 
The JC number was later modified during class because the class decided to disregard the 

square root for ease of calculation. The resulting ranking is illustrated in Table 8. 
 

Table 8. Ranking of samples using the JC number procedure 
 

Sample 
Count of 

Black 
Count of 

Red 
Count of 

White 
Count of 
Brown 

Modified JC 
Number* 

Ranking of the JC 
# procedure 

A 23 27 25 25 8 1 

B 18 24 29 29 82 2 

C 18 23 28 31 98 3 

D 14 27 29 30 166 4 

E 20 14 36 30 292 6 

F 25 24 16 35 182 5 

G 10 15 23 52 1058 8 

H 16 25 23 36 206 7 

* Modified JC = (25count Black)2 + (25count Red)2 + (25count White)2 + (25count Brown)2 
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The students who constructed the JC number had an approach distinct from the other 
methods because they did not use the representative interval (21, 29) from Stage 2 to 
construct their procedure for ranking. Their method raised questions for the other students. 
The following excerpt shows the class discussion about how useful the class-generated 
interval was for the ranking task. 

 
Jonah: We didn’t take our pre-determined range [21 to 29] into account at all. 
River: I almost think our range [21 to 29] kind of confused us a little bit. I don't know. 

I'm still stuck on the fact they [samples] are all supposed to be equal [all colors 
have the same proportion]. 

 
In this excerpt, we see students discuss the usefulness of the class-generated interval in 

their ranking methods. Jonah mentions that his method did not consider the class-generated 
interval. River also elaborates that the intervals might have caused confusion in the ranking 
task because they were not directly taking into account the assumption that each category 
should be equally distributed. Overall, the class favored the JC number because it appeared 
more mathematical and looked like a standard deviation calculation. In addition, their method 
gave them a single measure for ranking as opposed to methods (such as pairwise deviation) 
which gave two measures for ranking. 

 
4.2.  STAGE 4: SAMPLING DISTRIBUTION OF JC NUMBERS 

 
After the class discussed Jonah and Charles’ constructed JC number, the class decided to 

use this method as the preferred procedure for finding a statistic from the observed data. The 
instructional strategy shifted to the construction of a sampling distribution of JC numbers 
(from an assumed population of four colors of beans in equal proportions) and ways to create 
connections between the sampling distribution, observed statistic and informal inference 
ideas (Stages 4 and 5). At the start of this teaching episode, students were asked to: (1) 
imagine taking many samples of beans from the population of four colors with equal 
proportions; (2) imagine computing the JC number of each sample; and (3) construct a dot 
plot of the JC numbers based on their images of what the distribution would look like. The 
excerpt below is from one group’s discussion. 

 
Eddie: So that’s our spread, from 0 to 75 squared.  Now the center as far as 

distribution well if we expected to get 0...no. 
Jonah: It can’t be centered if... 
Eddie: That’s kind of weird.  But what I’m saying is as far as repeating this over again 

we expect to get mostly representative samples right?…So if we’re talking 
about the spread of this distribution of data it’s going to look something like 
this [Figure 6] right? That is most of our values will be mostly around here [see 
* in Figure 6] 

Jonah: So if we didn’t square it we would have negatives… 
Eddie: Exactly!  Exactly. That’s like the effect of squaring. …It’s kind of lopsided.  

And I think that actually fits with the chi-squared values for low degrees of 
freedom.  It’s going there.  If the degrees of freedom are low, like 4 or 3, you 
have that kind of lopsided distribution. 
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Eddie begins the discussion by directing the group’s attention to the location of the least 
and most representative samples in his sampling distribution (Figure 6). He gets 752 by 
considering a case in which the entire sample is one color (he forgets about adding in three of 
the (0 – 25)2 terms for the rest of the JC number computation). During this moment Eddie 
and his partner, Jonah, realize that there is something perplexing about the distribution at 
zero. However, the two move on to describing the general shape of a chi-squared distribution. 
It is interesting that Eddie now sees the connection to chi-squared distributions, though he did 
not recognize the ranking task as a situation in which to apply a goodness-of-fit test in Stages 
1-3. 

 

 
 

Figure 6. Eddie’s conjectured sampling distribution. 
 
After giving the students the opportunity to discuss and conjecture within their groups, 

Eddie presented his group’s findings to the class. 
 

Eddie: We started by considering the range because that seems like an easy place to 
start. So at best we pick a sample and it’s perfectly representative, exactly 25% 
of everything.  The value of the JC number we got would be 0 and at worst it is 
entirely composed of 1 color.  It doesn’t really matter which one.  In this case, 
it would have a JC number of 75 squared. 

Class: It should be plus 3 times 25 squared, ’cause zero minus… 
Eddie: Oh yeah 0 minus 25.  Oh shoot, so it could be even worse. Great! So… 75 

squared plus 3 times 25 squared. 
 
Here the class makes sense of Eddie’s range idea for the most and least representative 

cases, and correct his calculation error. Building on Eddie’s presentation, the class discusses 
the idea of a perfectly representative sample (25 of each color) and the least representative 
sample (100 of a single color). As Eddie continued to share his group’s graph and the 
reasoning they used, discussions of shape and symmetry arose. 
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Eddie: And then uh...we uh... we would expect if we did this repeatedly over a long 

period of time that most of our samples would be representative within some 
range of uh that kind of golden JC number of zero.  But it would be kind of 
weird to get an exactly representative sample.  So we sort of fudge this right 
here [points at the peak of Figure 6]. There is going to be some sort of a magic 
number that's uh in the center of all this [Figure 6]. And uh...but as then you 
got more and more outlandish unrepresentative samples you expect to see that 
less and less often. 

Instructor: Any comments or questions? 
Danny: I kind of doubt that you get close to that many zeros... 
Eddie: That’s a good point.  I feel very uncertain of placing it here versus here 

[pointing to the frequency of the graph at 0, see Figure 6].  I mean the original 
we drew was kind of a straight drop but yeah...you are probably right it [the 
frequency of the plot at 0] is probably lower down here because it seems like 
picking an exact...I mean exactly 25 of each seems like kind of a problem. 

Instructor: Okay so my question is how is this different from like the other distributions 
you have been seeing?  Like say the normal distribution? 

Eddie: Yeah right. The big...kind of obvious difference is that this [Figure 6] one is 
lopsided...it [refers to a normal curve] doesn't have a tail coming off at this end 
[points to the left side of the graph] while all the others distributions have 
something like that. 

Jonah: Not symmetric. 
 
In these excerpts, Eddie articulates some of the characteristics of a sampling distribution 

of JC numbers. At this point the class appears to converge upon the shape of a sampling 
distribution for the JC number, an approximate chi-squared graph. For example, Eddie 
mentions that the shape of the sampling distribution would be “lop-sided” and Jonah suggests 
a non-symmetric graph. The discussion continues with Rory challenging the expected 
frequency of a JC value of 0 and Eddie admits that his group was uncertain. Eddie’s group 
began with the mode at 0 and a graph that decreased from there. Other students in the class 
agreed that a JC number of 0 would be perfectly representative, but would rarely occur. By 
discussing the commonality of a JC number of 0, students questioned whether the graph they 
are sketching is theoretical or empirical. 

 
Researcher: So can you say a little more Rory about when you said you are doing an 

experimental graph? 
Rory: Yeah...I guess we were thinking about it sort of theoretically and then zero falls 

highest in the curve. 
Eddie: Interesting. That’s...you know we...we started drawing that picture.  We started 

here and dropped down here [pointing at Figure 6 and motioning at the graph’s 
height at 0]. 

Rory: As you did more and more samples it seems you’d get more zeros. 
Eddie: Yeah I...I feel you there but I don’t feel like a good strong theoretical reason 

for that.  I mean like...so...so maybe that’s true.  I’d like to see it. 
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Rory seems to be arguing that the theoretical graph would have a mode at 0 because as 
more samples are taken, there would be more chances of getting representative samples, thus, 
JC numbers of 0. However, he also seems to argue that empirical graphs have a lower 
occurrence of 0’s and Eddie’s graph in Figure 6, being empirical, has too many counts at 0. 
Eddie does not necessarily disagree with Rory but suggests there should be a theoretical 
argument for this. 

 
4.3.  STAGE 5: DISCUSSING CUTOFF VALUES 

 
After giving students the opportunity to discuss the sampling distribution of JC numbers, 

the instructor asked students to differentiate unusual versus representative samples using the 
JC number as their statistic (from Stage 3) relative to the empirical sampling distribution of 
statistics (Stage 4). The students were also asked to relate the class-generated interval (from 
Stage 2) with the JC number procedure (Stage 3) to create a JC number corresponding to a 
cutoff value for unusualness in their conjectured sampling distribution (Stage 4). 

 
River: So we assumed that... the worst case scenario is each of the numbers are 4 

away from 25 and that's the worst case scenario that our range said is still good. 
Martha: And take the four of those squared and you get 64.  So less than or equal to 64 

[(i.e., (21 – 25)2 + (21 – 25)2 + (29 – 25)2 + (29 – 25)2 = 64)]. 
Rory: Is representative. 
Bernard: The worst case would be 21, 21, 29, 29. 
Rory: I think it shows us that our range is just...personally...we’re not there yet. 
Instructor: What if you wanted to expand your range. ... How would that affect your JC 

number? 
Rory: It would increase it. 

 
In this excerpt, students describe a threshold of unusualness utilizing the endpoints of the 

class-generated interval (Stage 2) by describing the values of 21, 21, 29 and 29 as the worst 
possible sample within the interval. They then used the endpoint values as inputs to find a JC 
number of 64. Students also mention that increasing the size of the class-generated interval 
would generate a new critical cutoff value, illustrating the correspondence between the JC 
number procedure and the class-generated interval. 

After giving students an opportunity to hypothesize about the sampling distribution of JC 
numbers and a cutoff value, they were shown a simulated sampling distribution of JC 
numbers generated from a population of equal proportions (Figure 7). 

 
 
Figure 7. Sampling distribution of JC numbers from a uniformly distributed population 
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After viewing the empirical sampling distribution, many of the students disagreed with 
the previous cutoff value of 64 due to the large cluster of points around 64 in the dot plot. To 
give students a chance to discuss the unusualness of samples in light of the empirical 
sampling distribution, they were given the opportunity to discuss a new cutoff value and 
corresponding interval. 

 
Darla: So if you are looking at an interval that was 18 to 32...so the max difference is 

7.  So, looking at the max cutoff.  …I feel like...like then if we’re cutting off 
these things (refers to points on sampling distribution to the right of the cutoff 
value) and we know that these are possible then...like. 

Eddie: So the idea behind it is...is you are presented with a random sample and you 
don’t know this...and you have no idea.  And the question is what is the 
probability the random sample actually came from a population that looks like 
this which is not.... The way this is actually used is, you make a hypothesis 
about your population and then you take your sample and say if the hypothesis 
were true, how unlikely is this sample? 

Jonah: Let’s count the number that we get 10 of these [points on the sampling 
distribution] to the right?  That will give us 5%, which would be more extreme. 

 
In this excerpt, we notice students discussing percentages and potential cutoff values of 

JC numbers in relation to the empirical sampling distribution. Darla suggests widening their 
initial interval (18, 32). She also discusses deterministic versus probabilistic reasoning when 
she appears uncomfortable creating a cutoff point when outcomes outside that cutoff are still 
possible. Eddie attempts to explain the probabilistic nature of the problem and Jonah 
mentions the extreme 5% of JC numbers in the empirical sampling distribution. Eddie also 
describes the purpose of a cutoff value as a way to determine unusualness of a random 
sample by relating it back to his understanding of hypothesis testing. 

 
5. DISCUSSION 

 
The goal of this study was to examine how students might come to construct a viable 

hypothesis test for categorical data through guided reinvention. We also wanted to investigate 
the role variability might play in students’ development of a procedure for finding a statistic 
from the observed data, the concept of a critical value and the concept of sampling 
distributions based on the null hypothesis. Through our research we uncovered some 
evidence that students were able to generate an informal version of a hypothesis test for 
categorical data and that student constructions could be used to leverage ideas of an empirical 
sampling distribution and cutoff values for unusual statistics. This section focuses on a 
synthesis of the results presented in the previous section with careful consideration of 
students’ construction of a procedure for calculating a statistic from the observed data, 
students’ construction of an empirical sampling distribution, and the class-generated interval. 

Through guided reinvention we studied student-constructed statistics for measuring 
unusualness. Figure 8 summarizes the different methods outlined in the Results section as 
well as the true chi-squared statistic formula. Many of the methods generated by students  
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Figure 8. Students’ methods to rank unusualness. 
 

have similarities to normative statistical measures of variation. For example, the range and 
pairwise deviation approaches have similarities to range, interquartile range, and absolute 
deviations. The JC number is very close to the actual chi-squared statistic and bears 
resemblance to the formula for standard deviation. In this respect, the teaching experiment 
was successful because the students were able to construct meaningful methods for ranking 
unusual samples, which supported their understanding of viable hypothesis tests for 
categorical data. We hypothesize that this instructional approach gave students a deeper 
understanding of the construction of statistics and their role in hypothesis testing. Even this 
study’s students who did not create the JC number still used methods that created a platform 
for meaningful discussions regarding hypothesis testing concepts and the construction of 
empirical sampling distributions based on student-generated measures.  

One of the key components of an IHT approach is to put empirical sampling distributions 
at the core of hypothesis tests. We theorized that supporting students’ construction of a 
procedure to quantify the unusualness of a sample for categorical data could result in a deeper 
understanding of the empirical sampling distributions, which can be used as a tool in making 
inferences. This seemed to be the case. Once the class decided on the JC number as their 
statistic and they constructed a sampling distribution of JC numbers, they were able to 
discuss the properties of this sampling distribution in great detail and its role in making 
inferences. Evidence of students’ deeper understanding of sampling distributions is illustrated 
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in two particular class discussions. In the first discussion, the class developed a picture of the 
sampling distribution of JC numbers and engaged in meaningful discussions about the center, 
shape and spread of the distribution. Second, the class demonstrated an ability to adapt to 
changing cutoff values of unusualness in the sampling distribution. For example, students 
made connections between the class-generated interval (21, 29) and the corresponding JC 
number as a means to generate an initial cutoff value on the empirical sampling distributions 
for unusual samples. This approach illustrates students making connections between their 
initial intuitive notions of unusualness towards more formal measures they developed 
through their work and the empirical sampling distribution they constructed. We hypothesize 
that because students personally constructed the statistic (JC number) used to generate the 
empirical sampling distribution, we were able to leverage deeper thinking about a sampling 
distribution in a statistical inference argument. This discovery aligns with the research of 
Erickson (2006), who suggested that giving students the opportunity to create their own 
procedures for finding a statistic from the observed data could lead to a deeper understanding 
of hypothesis testing. 

Finally, the class discussions around the class-generated interval illustrates the challenge 
students have coming up with an expected range of variability from sample to sample. 
Students do not have good internal measures for variability especially without experiences 
working with repeated samples. The representative interval voted on by the class (i.e., 21 to 
29) ended up being extremely conservative. By the end of the teaching experiment, students 
were able to reflect on this initial interval. In particular, when students found the JC number 
corresponding to their interval values they realized their initial choice was too conservative. 
This was a pivotal and culminating moment in the teaching experiment because students had 
the opportunity to connect their intuitive choice for a representative interval to the class-
constructed statistic (JC number) and the resulting empirical sampling distribution. This 
illustrates how a sampling distribution can support students’ understanding of variability. 
This approach to learning hypothesis testing aligns with the research literature that suggests 
the importance of understanding sampling distributions in the learning of statistical inference 
(e.g., Chance & Rossman, 2006; Erickson, 2006; Garfield & Ben-Zvi, 2008; Weinberg et al., 
2010). Rarely would a traditional course offer the opportunity for making these connections 
and allow students to reflect on prior assumptions. The class-generated interval also 
illustrates the tendency of students to consider only small changes in variability. The four-
color bean task is especially difficult because variation must be determined among multiple 
dependent categories. By analyzing an empirical sampling distribution of statistics, students 
can openly discuss variability for simple and complex samples. 

 
6. CONCLUSIONS AND FURTHER RESEARCH 

 
In the beginning of the paper, we presented two research questions on hypothesis testing:   
1. How do in-service and pre-service teachers (IPSTs) move from informal intuitions 

toward more formal concepts of hypothesis testing for categorical data using a guided 
reinvention approach? 

2. What role does IPSTs’ intuition about variability play in constructing empirical 
sampling distributions and developing  procedures for finding a statistic and critical 
value used in a hypothesis test for categorical data? 
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The research presented here used a guided reinvention methodology to study students’ 
construction of an informal hypothesis test for categorical data utilizing intuitions about 
variability and incorporating sampling distributions and simulations. Our work was 
successful in facilitating students’ construction of these fundamental concepts of hypothesis 
testing. The HLT we developed (including learning goals and subsequent instructional 
activities) was useful in facilitating students’ thinking about statistics, sampling distributions 
and informal inference. In addition, our work contributes to current research by illustrating a 
potential conceptual framework (Figure 8) of student development. This framework outlines 
a model on how students might develop a procedure for finding an observed statistic when 
working with categorical data.  

While our work makes a contribution to research on student thinking about hypothesis 
testing there were limitations to the study. First, the sample size is small (12 students) and 
may not be representative of a larger population. Second, these students were prospective 
and/or current math teachers who had strong mathematics backgrounds. We do not know if 
our instructional activities would support introductory statistics students, with limited 
mathematics background, reinvention of an informal hypothesis test for categorical data. 
However, it is our conjecture that the intuitive nature of the chi-squared statistic in a 
goodness-of-fit test makes it a viable starting point for introductory statistics students and 
that the potential for guided reinvention among this population is possible. We recommend 
future work studying this HLT with this population.  

A third limitation is that we wonder how the construction of representative intervals in 
Stage 2 impacted the methods students developed for ranking samples in Stage 3. One 
student (River) mentioned that the intervals confused her as she struggled to rank the 
unusualness of the samples (see excerpt in results). Furthermore, the group that developed the 
JC number mentioned that the class-generated interval was unnecessary for the method they 
constructed. The purpose of a representative interval was to generate discussions regarding 
intuitive ideas of unusualness and as a component to the construction of cutoff scores. Yet, it 
is possible that this approach restricted student thinking and subsequently impacted the types 
of methods they developed.  

In a future research study, it would be interesting to see how students would approach the 
ranking task without Stage 2. One recommendation is to modify the HLT where Stage 2 is 
removed. A possible new stage 2 would consist of activities where students ‘reinvent’ mean 
absolute deviation, standard deviation, and/or other methods for measuring variability within 
data sets prior to the bean activity. The time spent developing students’ reinvention of mean 
absolute and standard deviation may support their development of procedures for finding an 
observed statistic in a hypothesis testing context related to categorical data. In this study, we 
presented a case where students generated a procedure for finding an observed statistic for a 
population with four categories with equal proportions. Future research might have students 
expand their knowledge by considering a population with unequal proportions. This may 
allow students to investigate the limitations of the procedures they develop. For example, in 
the case of unequal proportions, the JC number would not be appropriate because having 
different proportions in each category results in differences in variability between categories. 
Students would need to consider how they could modify the JC number to accommodate this 
difference. Class discussions on these limitations could focus on the importance of 
developing procedures that account for weighted measures and potentially lead students 
towards generating the true chi-squared statistic.  
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Future research needs to study student development of a semi-formal construction of a 
hypothesis test for categorical data to the formal technique of a chi-squared goodness-of-fit 
test. The research presented here provides a new approach to the teaching and learning of 
hypothesis testing. It suggests that instruction could begin with informal tests for categorical 
data based on student intuitions of variability in a simple bean context and lead to the 
development of a formal chi-squared goodness-of-fit test. It is not only reasonable but also 
potentially beneficial for students to spend time reinventing an informal chi-squared 
goodness-of-fit test. Such reinvention may support students’ understanding of sampling 
distributions, variability, test statistics, cutoff values and how to use these concepts to make 
inferences. Furthermore, we argue that guided reinvention is particularly important for future 
teachers of statistics because it has the potential to strengthen teachers’ understanding of 
sampling distributions in hypothesis testing, support teachers in developing new approaches 
to their teaching that are more student centered and, subsequently, better support student 
learning through their new understandings.  
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