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ABSTRACT 

 
Repeated sampling approaches to inference that rely on simulations have recently gained 
prominence in statistics education, and probabilistic concepts are at the core of this 
approach. In this approach, learners need to develop a mapping among the problem 
situation, a physical enactment, computer representations, and the underlying 
randomization and sampling processes. We explicate the role of probability in this 
approach and draw upon a models and modeling perspective to support the development 
of teachers’ models for using a repeated sampling approach for inference. We explicate 
the model development task sequence and examine the teachers’ representations of their 
conceptualizations of a repeated sampling approach for inference. We propose key 
conceptualizations that can guide instruction when using simulations and repeated 
sampling for drawing inferences. 
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1. INTRODUCTION 
 
Making inferences from data is central for doing statistics. Repeated sampling approaches 

to inference have recently gained prominence in statistics education and probabilistic 
concepts are at the core of this approach. A simulation that uses repeated sampling can be an 
important tool to help students develop a deep understanding of the abstract statistical 
concepts involved in inferential reasoning (Burrill, 2002; Maxara & Biehler, 2006). Indeed, 
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Cobb (2007) suggests that educators can help students develop an understanding of inference 
through the “three R’s: randomize data, repeat by simulation, and reject any model that puts 
your data in its tail” (p.12). In this paper, we aim to unpack this “three R’s” approach to 
illuminate the role of probability in such a simulation approach to inference. 

Simulations of repeated sampling have been used in several curricula efforts in the United 
States at the collegiate level, and researchers have reported modest results in improvement of 
students’ understandings of inference through this approach (e.g., Garfield, delMas, & 
Zieffler, 2012; Tintle, Topliff, Vanderstoep, Holmes, & Swanson, 2012). In addition, new 
curriculum standards in some countries, such as the United States and New Zealand, suggest 
such an approach for high school students (Council of Chief State School Officers, 2010; 
New Zealand Ministry of Education, 2006).  

Many curriculum developers recommend that learners experience repeated sampling 
methods in a physical way before using computing power (e.g., Cobb, 2007; Rossman, 2008). 
The physical enactments are intended to assist learners in conceiving of the process of 
sampling as a repeatable action (e.g., Watson & Chance, 2012). Thus, physical enactments 
serve as a way to model the underlying probability assumptions in a problem (e.g., is it 
equally likely for two events to occur? does each person have an equal chance to being 
assigned to a treatment group?). However, in many curricula, the repeated sampling process 
is often created by the instructor or the curriculum materials, and students are asked to use a 
prescribed process with physical objects or are told exactly what to input in a computer 
simulation (e.g., Cumming, Miller, & Pfannkuch, 2014; Roy et al., 2014). A simulation 
approach (using physical and computer tools) seems to be an appropriate way to help 
students develop statistical inference conceptually. However, while the “three R’s” process 
may seem simple, understanding all parts of a simulation is conceptually complicated. In fact, 
learners who know how to conduct a simulation may not have a robust understanding of why 
they are conducting a simulation, what is being simulated, and how to make appropriate 
conclusions based on a simulation. Thus, our research aims to consider how learners and 
teachers could build a (conceptual) model for a repeated sampling approach to inference 
that highlights the role of probability models, uses both the power of physical models and the 
capabilities of computer simulations, and can be generally applied to many inference 
contexts.  

 
2. BACKGROUND AND THEORETICAL PERSPECTIVES 

 
There are two predominate ways of using models in statistical thinking: 1) “select or 

design and use appropriate models to simulate data to answer a research question”, and 2) “fit 
a statistical model to existing data or data you have collected through a survey or experiment 
in order to explain and describe the variability” (Garfield & Ben-Zvi, 2008, p. 147). In our 
work, we are focused on the first type of model. Simulations are in and of themselves models 
of a real world process. When designing and using a simulation, one is trying to model some 
process so as potentially to understand better the inputs, inner workings, and outputs of the 
process. At the core of a simulation approach to inference is randomness—the first of the 
“three R’s”. However, at every step of a simulation based repeated sampling approach to 
inference there is much deeper understanding of other issues concerning probability models 
that we aim to help unpack in our teaching and research. What follows are descriptions of the 
theoretical perspectives we use in our work related to probability models, models and 
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modeling perspective on learning, and repeated sampling representations and processes 
described by other researchers. 

 
2.1.  ROLE OF PROBABILITY MODELS 

 
Probability is an abstract concept that cannot be directly measured. There are many 

objects or real world events whose outcome cannot be completely determined unless you 
know all information about actions on the object or event in world (e.g., we can not 
determine the outcome of a coin toss unless we know all the physical forces acting upon the 
coin while it is tossed). In the absence of such knowledge, we can build models to express a 
probability of an event occurring. A simple example is to consider that in a given toss of a 
coin, without knowing all the forces acting upon the coin, we can not determine the outcome 
of which side will land facing up; thus, we build a probability model to estimate the 
likelihood of each side occurring.  

Three of the most common ways to approach developing a probability model are the 
classical (or Laplacean), frequentist, and subjectivist. In each of these approaches, there is an 
aspect of defining and structuring the problem at hand along with looking forward and 
looking backwards (Eichler & Vogel, 2014). When looking forward, one is building a model 
with predictive power of what is expected to happen in the future. When looking backwards, 
one is building a model based on data that has already occurred or on new data based on a 
simulation using a model for a probability of an event. In every instance, the models have 
underlying assumptions. Depending on the approach taken, looking forward and backwards 
may occur at different times in solving a problem and serve particular purposes.  

Chaput, Girard, and Henry (2011) describe three parts of a probability modeling process 
that includes embodying observations and assumptions into a pseudo-concrete working 
model, mathematizing the model into a hypothesis driven probability model that can be 
enacted, validating a model through examining the fit to data, and interpreting the model in 
the context of the problem. Many have advocated that we want students and teachers to 
understand the bi-directional relationship between probability models and data, and between 
empirically-developed models and theoretically-developed models (e.g., Eichler & Vogel, 
2014; Konold & Kazak, 2008; Lee & Lee, 2009; Pfannkuch & Ziedins, 2014; Pratt, 2011; 
Stohl & Tarr, 2002; Wild, 2006). We claim that in using a repeated sampling approach to 
inference, the assumptions and model-building process in a simulation should be made more 
explicit. Pfannkuch and Ziedins’ (2014) description of probability models and their purpose 
provides a useful perspective on the strong role that probability models have in a repeated 
sampling approach to inference: 

A probability model will often be associated with the idea of a system evolving 
dynamically over time… a model is usually built to answer a particular question or 
questions about a system, sometimes just to understand its behavior better, but often in 
order to optimize some measure of its performance, or alternatively, to predict 
performance under some alternative scenario. …although they [models] are only 
approximations to what happens in the real world, these approximations can help us 
better understand the behavior in the real world. (p. 103) 
In a repeated sampling approach to inference, students and teachers should be conceiving 

of the observed outcome (from an observational study or an experimental design) as resulting 
from a process that is repeatable, and that repeating the process may result in a different 
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outcome. Thus, the question becomes, how unusual is what happened in the particular 
instance that we know about already? In other words, what is the likelihood of a particular 
outcome occurring if a process is repeated many times? That is the end goal. But to begin 
with, we need to make sense of the problem we are trying to solve and ask what are some of 
the underlying assumptions we need to consider? What is the process in the problem that is 
being repeated and what is the role of randomness and probability in that process? All of 
these questions require a conceptual understanding (or model) of the simulation process and 
its underlying assumptions. 

 
2.2.  MODELS AND MODELING PERSPECTIVE 

 
Given our focus on using probability as a model, it made sense to situate our work in a 

models and modeling perspective on teaching and learning mathematics as articulated by 
Lesh and Doerr (2003). In this perspective, the goal for the learner is to build a model that 
can be generalized to other problem situations and productively re-used in a range of 
contexts. Thus, we are particularly interested in how teachers can develop a robust model of 
using repeated sampling for making inferences for problem situations. Such a model includes 
understanding the relationships among the problem situation, physical enactments of 
sampling, representations of those enactments, computer representations, the underlying 
randomization (i.e., the probability models discussed above), the distribution of the statistics 
of interest, and how to interpret and use such a distribution to make a decision. To achieve 
this goal, we designed and implemented a sequence of model development activities 
(Ärlebäck, Doerr, & O’Neil, 2013; Doerr & English, 2003; Hjalmarson, Diefes-Dux, 
Bowman, & Zawojewski, 2006; Hjalmarson, Diefes-Dux, & Moore, 2008). 

Model development sequences are structurally related tasks that begin with a model 
eliciting activity (MEA) and are followed by model exploration activities (MXA) and model 
application activities (MAA), as shown in Figure 1. These sequences provide a way of 
organizing instruction on a central concept such as proportional reasoning, rates of change, or 
variation and distribution. The MEA elicits learners’ initial models of a realistic problem 
situation. These models are systems of elements, relationships, operations, and rules that can 
be used to describe, explain or predict the behavior of the realistic situation. The model 
exploration activities then engage learners in thinking about the initial models that were 
elicited. The model exploration activities focus on the underlying structure of the model and 
on the strengths of various representations and ways of using them productively. Model 
application activities engage learners in thinking with their models by applying them to new 
contexts. This results in learners making adaptations to their model, extending previously 
explored representations, and refining language for describing, explaining or predicting the 
behavior of some realistic phenomena. Each component of a model development sequence 
engages learners in multiple cycles of descriptions, interpretations, conjectures and 
explanations that are tested, revised and refined while working with other learners. In this 
way, a central concept such as a repeated sampling approach to inference is not understood 
all at once, but rather learners deepen their understandings as their model (or conceptual 
system) is developed and revised over time through a sequence of modeling tasks. 
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Figure 1. The general structure of a model development sequence (Ärlebäck et al., 2013, 
p. 317). 

 
2.3.  VISUAL REPRESENTATIONS OF REPEATED SAMPLING 

 
Much research and curriculum development in recent years has focused on understanding 

inference and simulation approaches. For the purposes of our paper, we will highlight the 
work of several researchers whose visual representations and descriptions of repeated 
sampling informed the design of the model development sequence, its implementation and 
our research. In 2002, Saldanha and Thompson reported that when students can visualize a 
simulation process through a three-tier scheme, they develop a deeper understanding of the 
process and logic of inference. This scheme is centered on “the images of repeatedly 
sampling from a population, recording a statistic, and tracking the accumulation of statistics 
as they distribute themselves along a range of possibilities” (p. 261). The diagram in Figure 2 
is meant to draw attention explicitly to the multiplicative relationship among a population, 
sample(s), and a distribution of sample statistics. Their work also had students experience and 
attend to three levels in the sampling process: 1) randomly draw items to form a sample of a 
given size and record a statistic of interest, 2) repeat Level 1 process a large number of times 
and accumulate a collection of statistics, and 3) partition the collection of statistics to 
determine what proportion lies beyond a given value. 

 Several researchers have built from Saldanha and Thompson’s (2002) multi-tier 
scheme and the models and modeling work of Lesh and Doerr (2003) for creating other 
visual representations that can assist students when using simulation approaches, or repeated 
sampling techniques, for inference (Garfield et al., 2012; Lane-Getaz, 2006). Lane-Getaz 
offered the Simulation Process Model (SPM) including three tiers: population parameters, 
random samples, and distribution of sample statistics. The SPM diagram resembles Saldanha 
and Thompson’s representation and verbal description of three levels, but uses more explicit 
language in the diagram itself. The first tier is to describe the population distribution as the 
beginning of the simulation process, then, random samples are drawn from the population, 
and a sample statistic is selected related to the simulation process for Tier 2. In the last and 
third tier, the distribution of the sample statistics is formulated, and used to evaluate the 
likelihood of the event happened in the original problem (Figure 3). Lane-Getaz described 
how she used the SPM diagram as an organizer to help students understand the general 
process of inference. She then adapted the SPM to specific examples used in her course so 
that students can see how the diagram frames the simulation process used in different 
contexts. 
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Figure 2. Diagram for sampling conception (Saldanha & Thompson, 2002, p. 267). 
 
  

 
 

Figure 3. Representation of Simulation Process Model (Lane-Getaz, 2006, p. 280). 
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In line with Lane-Getaz’s suggestion, Garfield et al. (2012) used a models and modeling 
approach in the design and research of the CATALYST curriculum (Catalyst for Change, 
2012). They describe a generalized structure to the logic of a simulation approach to 
inference that includes specifying a model to be used to generate data, using the model to 
generate simulated data for a single trial and then multiple trials, each time collecting a 
statistic of interest, and finally using the distribution of the collected summary measures to 
compare the observed data with the behavior of the model (Garfield et al., 2012, see p. 887 
for more details). Garfield and colleagues advocated using a general structured diagram with 
students to help organize their thinking about the general simulation process and for specific 
problems. Figure 4 shows their three-level diagram applied to a particular problem (Cereal 
Box prizes) that includes specifying a model, randomizing and repeating samples and 
collecting numerical summary measures, and evaluating a distribution of the numerical 
summary measures.  

 

 
 

Figure 4. Diagram of CATALYST modeling and simulation process (Garfield et al., 2012, 
p. 890). 

 
Our understanding of the literature on probability models and repeated sampling 

approaches to inference, and the representations used by others, informed our design of a 
sequence of model development tasks to use with participants in a graduate course on 
teaching and learning statistics. What follows is a description of the course, participants, and 
a set of tasks that took a repeated sampling approach to inference using both physical and 
computer-based simulations. The set of tasks served as a model development sequence (Lesh, 
Cramer, Doerr, Post, & Zawojewski, 2003) that enabled us to support the development of 
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participants’ understanding of a simulation approach to inference while also revealing and 
eliciting their thinking.  

 
3. THE STUDY 

 
3.1.  SETTING AND PARTICIPANTS  

 
A team of four instructors from two institutions met weekly via videoconference for an 

academic year to design a 15-week graduate-level course offered at each institution, and to 
discuss issues and alter plans as the course was taught. The course consisted of opportunities 
for participants, mostly secondary and post-secondary teachers, to engage in statistical 
investigations with real data and tasks designed to develop understandings of distribution, 
samples and sampling distributions, and inferential statistics, especially using repeated 
sampling approaches. Across the two institutions, the course served a variety of graduate 
students (n = 27). Participants consisted of one undergraduate pre-service teacher, six pre-
service teachers in a masters program, 11 in-service teachers enrolled in a masters program, 
one full-time masters student in mathematics education, eight doctoral students in 
mathematics or mathematics education. Twenty-one participants were female and six were 
male. Six participants indicated that English was their second language. Most participants 
had completed the equivalent of an undergraduate degree in mathematics, and all but two had 
at least one prior course in statistics. 

 
3.2.  THE MODEL DEVELOPMENT SEQUENCE 

 
Our instructional goal for our participants was to support them in developing a general 

model that they could use to approach inference situations using a repeated sampling 
approach, and for them to be able to assist other learners in using a simulation approach. This 
model includes understanding the relationships among the problem situation, physical 
enactments of sampling, representations of those enactments, computer representations, and 
the underlying randomization (i.e., the probability models discussed above), the distribution 
of the statistics of interest and how to interpret and use such a distribution to make a decision. 
The model development sequence we designed and implemented is about having learners (in 
this case participants who are interested in teaching statistics) develop a model for repeated 
sampling as an approach for making inferences.  In order for participants to develop that 
model (and the entailments needed for teaching that model), they have to be able to make 
connections to and use the underlying probability model of repeatable actions with 
unpredictable outcomes.  What follows is a detailed description of the model development 
sequence of tasks, and how we thought each task would contribute to the development of 
participants’ general models for using a repeated sampling approach to inference. Further 
details about our planned and enacted trajectory for our learners are in Arnold, Confrey, 
Jones, Lee, and Pfannkuch (forthcoming). 

 
Model eliciting activity 1 As we noted above, at the core of a simulation approach is a 

random process. By this we mean a repeatable action whose outcome cannot be determined 
ahead of time.  While we were certain that our participants would be familiar with coin 
tosses, spinners and rolls of a die, we did not assume that they fully appreciated the role of 
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such repeatable actions in simulations. Thus, as with all model development sequences, the 
first model eliciting activity (MEA1) was designed to bring forth the concept of using 
probability models to describe results (expected or observed) from a repeatable action. We 
engaged students in using coins, spinners, marbles, plastic cups and both fair and unfair dice 
to identify the repeatable action, describe the possible outcomes of those actions, identify an 
event of interest, and then repeatedly perform some action with the hands-on material they 
were given, record the event of interest, and then collect the results. Finally, they needed to 
estimate a probability distribution for the event of interest. This experience made it clear to 
our participants that assumptions about randomness and equiprobability needed to be 
grappled with and were not always evident. It also drew participants’ attention to the need to 
explicitly describe what action was being repeated and what event was actually of interest. 
They seemed to walk away with a new founded appreciation that using physical devices in 
probability and statistics lessons required much more careful attention and consideration than 
they had typically experienced as a learner. 

 
Model eliciting activity 2 A few weeks later, after engaging in informal inference tasks 

using probability simulations of unfair dice and examining students’ reasoning (Schoolopoly 
task, see Lee, Angotti, & Tarr, 2010), we focused more explicitly on using a simulation 
approach to inference by engaging in a second model eliciting activity (MEA2), adapted from 
the Paul the Octopus task (Lock, Lock, Morgan, Lock, & Lock, 2013). In this task, the 
famous octopus, Paul, had achieved eight out of eight correct predictions by swimming in a 
tank to choose one of two boxes marked with the country flags to eat from. His choice of 
boxes was deemed as his prediction and then compared with the actual winner of the game to 
see if he was correct. This task was designed to elicit learners’ initial models of repeated 
sampling, using coins in a cup as a repeatable random process, to determine the likelihood of 
a single proportion, namely correctly guessing the winners of eight out of eight games. Given 
a set of eight coins and a cup, the learners were asked to generate a way to simulate the 
actions in the real scenario that were being repeated. They were easily able to see how they 
could use one coin toss to simulate the octopus choosing a box to eat from. However, a rich 
discussion ensued concerning whether to simulate another coin toss for the actual winner and 
compare it to the prediction coin toss. In addition, when it was suggested to consider the coin 
toss as representing whether the prediction was correct or not, a further discussion ensued 
about whether they needed to do eight tosses with one coin, or if they could toss eight coins 
simultaneously. This discussion made it obvious to us that the mapping of the real world 
scenario to the simulation was not at all obvious. Eventually, they agreed to work in pairs 
with eight coins in a cup, spill the coins out, record the number of heads representing correct 
predictions, and repeat this four times. The resulting collection of number of correct 
predictions were marked on a dotplot displayed on the board. This was followed by a 
discussion of the shape of the distribution, what the distribution was actually of (which also 
caused lots of rich discussion and was not obvious to many participants), and which results 
constituted a likely or unlikely event (such as predicting all eight games correctly).  

 
Model exploration activity 3 Following MEA2, the learners engaged with a model 

exploration activity (MXA3). The goal of the MXA3 was to explore the representations used 
in the Paul the Octopus task and to examine the underlying structure of the learners’ models 
for a repeated sampling approach. This was done in three computational environments: 
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Statkey (http://lock5stat.com/statkey/), an applet available as part of the Rossman/Chance 
Applet Collection (http://www.rossmanchance.com/applets/OneProp/OneProp.htm), and in 
TinkerPlots (Konold & Miller, 2011). Each of these environments allowed the learners to 
explore various parameters of their simulation models (e.g., number of samples, using 
probability other than 50/50), and how these affected the distribution of sample proportions 
(or frequencies), which would not be possible with their by-hand simulations with coins. 

 
Model application activity 4 Model application activities apply and adapt models that 

were initially elicited in an MEA. In this sequence, we wanted to apply the repeated sampling 
model for understanding the likelihood of a single proportion (MEA2 and MXA3 with Paul 
the Octopus task) to using repeated sampling to compare two proportions from an 
experimental design study (MAA4). To do this, we modified the Dolphin Therapy task 
(Catalysts for Change, 2012) to ask our participants to create a by-hand simulation using 
index cards that would answer the question posed in the task: can swimming with dolphins be 
therapeutic for patients suffering from depression? In the experiment, in the dolphin 
swimming group (treatment), 10/15 improved their depression, while 3/15 improved in the 
control group. They were given 30 index cards marked with the therapeutic results from the 
study of the 30 participants in two groups of 15, control and treatment; thus, 13 cards were 
marked with “YES” for benefiting with swimming with dolphins, and 17 cards marked with 
“NO” for not benefiting from the swimming. We anticipated that it would not be at all 
obvious how to create such a simulation. The simulation requires making an assumption that 
patients would improve (or not) their levels of depression, regardless of which group they are 
assigned. The assumption that each person has the same chance of being assigned to either 
group and thus that under random assignment we would not expect a difference in the 
proportion of those improved in either group. Essentially, the learners could shuffle the cards 
representing the 30 patient improvements, and deal the cards into two groups of 15 (a 
repeatable action of randomizing them and assigning into two groups). Hence by repeating 
this action and computing the difference in proportion of YES’s in each group, the learners 
should be able to examine a distribution of the difference in proportions and consider how 
likely it is that the benefits of therapy happened by chance alone. A variety of methods were 
created by the learners and, after discussion, the groups came to consensus on a method so 
that class level results could be aggregated in a dotplot, discussed and interpreted. 

 
Model exploration activities 5 and 6 The Dolphin Therapy hands-on experience was 

followed by another model exploration activity (MXA5) where the representations and 
structure of the simulation and decision making using the sampling distribution was explored 
again in Statkey and TinkerPlots.  Teachers were also able to further explore the structure of 
their developing models by engaging with two articles (Lane-Getaz, 2006; Lee, Starling, & 
Gonzalez, 2014) to read on their own in which authors used diagrams (Figure 3, and another 
similar to Figure 2) to illustrate the simulation approach used in the tasks discussed in the 
articles (MXA6).  

 
Model exploration activity 7 After the two simulation tasks (Paul the Octopus and 

Dolphin Therapy), the instructor summarized the models that were designed and the resulting 
simulation process used. The intent of this summary was to help make connections across the 
two simulation tasks and generalize the processes used to develop an overall conception of 

http://www.rossmanchance.com/applets/OneProp/OneProp.htm
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the modeling and simulation process. After this summary, and before the assigned readings 
had been discussed, the instructor used the following task to allow teachers an opportunity to 
express their developing conceptions of the simulation process in terms of how they would 
help their students to understand the process. Teachers formed nine groups of 2-3 to create 
diagrams on a large poster. The teachers were given the following task (MXA7):  

Suppose you were going to use a randomization approach with your students to help them 
use a simulation (with physical objects or computer models) to investigate if an observed 
statistic is likely to occur, or not unlikely to occur. Draw a diagram you could use to help 
students understand the general process used for applying randomization techniques for 
solving these types of tasks. 
We consider this last task a particular kind of model exploration activity in that it focuses 

on representations of the structure of models of repeated sampling for drawing inferences that 
would serve a pedagogical purpose.  That is, the intended audience for this representation 
would be the future students of our participants and this representation hence served a 
perceived purpose of explaining the structure of models of repeated sampling to other 
learners.   

 
Model application activity 8 Following this MXA, we noticed the wide variety of 

representations expressed in participants’ diagram, and that many participants seem to be 
“hand-waving” about the “magic” that happens in the randomize and repeat phases in a 
simulation approach. Thus, we designed an additional MAA task (The Jump Rope task) that 
was structurally similar to the Dolphin Therapy task but required an adaptation of their 
previous model since it involved comparing means for two unequally-sized groups (MAA8). 
In addition, we deliberately changed the form of the manipulatives (using unmarked craft 
sticks) to push the learners further in understanding the role of randomization in their model 
of repeated sampling.  The participants had varied approaches to recognizing what the 
repeatable action was in this scenario. Many used the craft sticks in some way (with slight 
variations from each other, to indicate jump rope scores and repeatedly re-assigning those 
scores into two different unequal-sized groups. Some of our participants really struggled with 
this task and did not create very viable ways of representing the scores or reassignment. Their 
attempts at applying their model for a repeated sampling approach to inference to create this 
simulation in such a different context really illuminated for us how fragile their models may 
be. 

 
4. DEVELOPING MODELS OF A REPEATED SAMPLING APPROACH TO 

INFERENCE 
 
In what ways could our participants express their general model for a repeated sampling 

through a simulation approach to inference? In this section, we carefully examine our 
participants’ diagrams generated in the MXA7 task that they thought would be useful for 
helping students learning to use a repeated sampling approach. We chose five diagrams 
created by our participants that are representative of the collection of nine diagrams, and were 
specifically selected to illustrate our findings. These diagrams are in the Appendix and 
labeled Diagram A, B, C, D, and E. Though we began our open coding of the diagrams 
informed by literature and the ways others had represented repeated sampling and simulation 
approaches (Figures 2, 3, 4), we will explicate how our analysis of the diagrams created by 



227 
 

our participants led us to identify aspects that seemed to be more or less salient in the 
participants’ models of using a repeated sampling approach to inference. What follows is a 
description of the major themes we identified in the representations and descriptions in the 
diagrams that indicated to us how well developed participants’ models were. It is these 
themes that are shaping our vision for ways to be more explicit about the underlying role of 
probability in simulations and about the design of tasks that support the development of 
learners’ models of repeated sampling in simulation approaches to inference.  

 
4.1.  REPRESENTATIONS OF THE PROBLEM AND/OR MODEL 

 
Lane-Getaz (2006) presented the process of using simulation to develop the logic of 

inference starting with a question in mind, “what if”, to investigate a problem (see Figure 3). 
In this step, students need to specify a “theory, assumption, or parameter” for further 
sampling. The “Model” level of Garfield et al. (2012), shown in Figure 4, explicitly unpacks 
the real world cereal box into statistical terms (six equally likely prizes). We consider this 
step as crucial in creating a probability model of the real world problem. The purpose of this 
step is to express the problem of interest in statistical terms that include a set of assumptions 
(e.g., likelihood of an event occurring). We found that the diagrams varied in the degree to 
which they made explicit the role of probability with its assumptions. For example, the top 
row of “steps” in Diagrams A and E rudimentarily addresses the importance of creating a 
probability model of the real world problem. Diagram C shows that the group of participants 
decided to use a coin flip as a model of a mother’s reaction (yes or no) to whether children 
can have a party. Implicitly, this coin flip model makes the assumption that probability of a 
head/tail (likely assumed to be 0.5) is congruent to the probability of the mother’s response of 
yes/no. In Diagram D, participants elaborated steps needed to model a real world problem by 
stating, “determine parameter of interest, determine assumptions for proportion(s)”, and 
“simulation model (based on assumptions)”.  

Emerging from our analysis of these diagrams, we found that three groups of our 
participants attended to identifying the event of interest and the statistical result in the 
original problem that would be later used (collected) in the simulation process and for 
inferential decision-making. For example, the Diagrams A, B, and E explicitly marked or 
indicated a quantity of interest from the original problem and referred to it later in the 
simulation process as the statistics to collect and that one needs to locate that statistic in the 
distribution of sample statistics for decision making. Thus, three of these five diagrams 
emphasized the process of creating a model for the real world problem and attended to the 
importance of the original statistics of interest in the problem. We note that this level of detail 
attended to by our participants does not appear explicitly in the models in the research 
literature that we have shown in Figures 2, 3, and 4. 

After the probability model for the real world problem is formulated, one needs to 
identify the process that is being repeated in the simulation. In this step, one decides which 
types of random-generating devices (physical or technological tools) can be used to 
accurately represent the repeated action in the problem, whether it is a random selection from 
a population, a randomly generated outcome, or a random assignment to a group. When 
designing and using the simulation, one must consider the assumptions behind the use of the 
tools and their alignment with the assumptions made in the question of interest. For example, 
when using a coin to model the chance of success for a mother saying yes to a party 



228 
 

(Diagram C), an implicit assumption being made is that the coin is fair and that the 
probabilities of a head and a tail are equal and equal to 0.5. Similarly, if one decides to use a 
simulation tool, one needs to specify the probability distribution and how it matches the 
assumptions in the problem. In Diagram D, the group of participants referred to these 
assumptions (“Simulation Model: Based on Assumptions”) but did not explicitly specify the 
need to examine the match between the probability distribution and the problem situation.  

 
4.2.  REPRESENTATIONS OF THE RANDOMIZE AND REPEAT PROCESS 

 
The participants had very different ways of representing the process of generating a 

random sample of size n, observing an event of interest and computing a statistic, repeating 
this process k times, and collecting and displaying statistics from all k samples. To begin 
with, the notion of a repeated random sample (or randomization process) was not always 
explicit. While Diagrams B and E indicated random sampling, Diagram C may have implied 
a random process by noting the “coin flip”. The notion of a single sample of size n, repeated 
k times was also not always well represented. For the diagrams using a specific example (B 
and C), the n that was noted in the diagrams matched the problem context (n=15 in each 
group, and n= 5 responses from the mother). We also see in Diagram B that participants 
represented the repeatable process of combining all participants together and reassigning to 
groups for the Dolphin Therapy example. However, the participants who drew or described a 
general process did not explicitly state the need for k samples of size n, though phrases such 
as “many samples” and “high number”, and the pictorial diagrams in Diagram C and D 
implied a repeated process. As deliberately pointed out in the Lane-Getaz’s (2006) diagram 
(Figure 3), “the samples of size n” are important to distinguish from k samples (often many) 
in repeated sampling. Both n and k are critical parameters in designing and running a 
simulation, especially since these parameters are often inputs required in software such as 
TinkerPlots.  

All teachers explicitly or implicitly indicated that the simulation process includes 
recording, collecting, and graphing a statistic of interest from each sample. However, the 
level of detail in their representations of this process varied greatly. Because these diagrams 
were meant for participants to express a representation they could use to help students 
understand this process, we were left wondering whether they really understood the 
randomize, repeat, and collect process.  

 
4.3.  REPRESENTATIONS OF AN EMPIRICAL SAMPLING DISTRIBUTION 

 
A key representation needed for using a simulation approach to inference is the resulting 

empirical sampling distribution of the statistics collected in each repeated sample about the 
event of interest (e.g., the proportion of correct predictions from Paul the Octopus, or the 
difference in proportions of participants with improved depression in Dolphin Therapy).  All 
but one diagram shown in the Appendix included an image of an empirical sampling 
distribution, with the exception shown in Diagram D. Three of the five diagrams explicitly 
indicated that the original statistic from the problem context should be located in the 
distribution (A, B, and E) and used to assess likelihood that the original statistics would occur 
under the assumed model of random selection or assignment. These diagrams explicitly 
indicated where to look in the empirical sampling distribution and how to estimate a 
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probability (proportion or p-value) of the actual observed event by examining the tail(s) of 
the distribution. These participants seemed to have a more fully developed notion of how the 
p-value is an indicator of how unusual the event of interest is when considering the repeatable 
actions from the original problem under the null hypothesis (no change/no difference or 
equally likely). 

 
5. DISCUSSION 

 
The model development sequence we designed and implemented and the successes and 

struggles our course participants had in developing robust conceptual models for repeated 
sampling approaches to inference led us to deep reflection about how attending to the role of 
probability in a simulation approach to inference may be useful. Especially when considering 
our participants’ diagrams as external representations of their conceptual models, we saw the 
need to propose aspects of a repeated sampling approach that should be made much more 
explicit for learners and teachers.  

All the diagrams drawn by prior researchers (Saldanha & Thompson, 2002; Lane-Getaz, 
2006; Garfield et al., 2012) include three tiers or levels for a simulation process (Figures 2, 3, 
4), including problem and models, repeated samples, and a sampling distribution, even 
though these terms are either implicitly or explicitly used. More recent work by Podworny 
and Biehler (2014) explicitly draws learners’ attention to each of these aspects of a 
simulation process as they use a particular structure in their tasks for students that have them 
record the work and interpretations they are making in each part of a simulation with 
TinkerPlots.  

In designing our model development sequence, we certainly were attending to creating 
experiences for our learners to incorporate these aspects into their conceptual model. The 
prior work of the first author focused on probability simulations also highly influenced the 
nature of the first MEA (MEA1 with physical simulations with common random number 
generating devices), and how probability language was used throughout the task sequence. 
During the task sequence there were instances when, as with all real classroom research, 
conversations had to be cut short, and ways that instructors expressed conceptualizations or 
posed questions to our learners were not well phrased. Thus, we view our enacted model 
development sequence as a critical, but not final, step in understanding how instructors can 
best design experiences for their learners that lead to a robust and general conceptual model 
on how repeated sampling approaches to inference can be used in a variety of contexts.   

To assist us in pushing forward, we used both our empirical data from our learners’ 
diagrams and the approaches, descriptions, and diagrams used by others (Saldanha & 
Thompson, 2002; Lane-Getaz, 2006; Garfield et al., 2012). We outline several key 
conceptualizations that we believe would be powerful components of learners’ conceptual 
models for a repeated sampling approach to inference that emphasizes the role of probability.  

First and foremost, we suggest that more attention needs to be given to the modeling 
process, the explicit role of probability in inference, and use of probability language. We feel 
that there is a two-part modeling process that should be made explicit. The first is to create a 
local specific model of the real world context in statistical terms. The second is creating a 
simulation process that models the repeatable actions in the original problem and can be used 
to generate random samples. Most previous work has combined these two aspects into a 
single “model” or “population” level. We also suggest being more explicit concerning 
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building a distribution of sample statistics, viewing the distribution as a probability 
distribution, using the distribution to reason about the observed statistic, and making a claim 
about the chance of that observed statistic occurring. In Table 1, we explicate the key 
conceptualizations we believe are critical in a repeated sampling approach to inference, and 
what such conceptualizations may afford in learners’ capabilities.  

 
Table 1. Key conceptions and capabilities for learners’ general models for using repeated 

sampling for inference. 
 

Conceptualization Capabilities this conception affords 
Conceive of events in the real world 
problem as a result from a repeateable 
action  
 

• Identify the underlying probability model of the event 
of interest (what is repeatable?) 

• Consider what results would be considered unusual, or 
what would be considered usual or “to be expected”. 

• Express a usual expectation as a null hypothesis.  
• Specify the observed statistic and the statistic of 

interest that should be observed when each action is 
repeated. 

Conceive of and create a method for 
simulating the repeated sampling 
process 

• Identify the repeatable action that needs to be enacted.  
• Choose tool (physical or computer) and map the action 

in the real word to a simple repeatable process using 
the tool. 

Conceive of repeated sampling as a 
way to  generate simulated statistics 

• Recognize the need to enact the process for selecting a 
random sample of same size n and record the statistic 
for event of interest. 

• Repeat the random sampling process k times (large 
number) and collect the statistic from each sample for 
event of interest. 

Conceive of how collected statistics 
from repeated samples vary with 
respect to likelihood 

• Build a distribution of the recorded statistics. 
• Notice what seems to be usual (typical, or more likely 

to occur), and what is unusual (or unlikely to occur). 
• Locate the original observed statistic in the distribution 

and consider whether it was in a range of “likely to 
happen” or “unlikely to happen”. 

Conceive of the inferential decision as 
involving deciding if the observed 
statistic and those more extreme are 
explainable by chance. 

• Use proportional reasoning to evaluate the likelihood 
that the observed event, and those more extreme, 
happened under the random process used to generate 
repeated actions and simulated statistics. 

 
We claim the conceptualizations noted in Table 1 are important for learners to develop in 

order to have a robust way of conceiving how a repeated sampling approach using 
simulations can be used to engage in inference. Because our target learners are those 
interested in teaching statistics, our focus is on assisting them to understand how probability 
is used in this approach and to develop a generalized model as a connected conceptual system 
that they can draw upon themselves as they assist their own learners in using a repeated 
sampling approach to inference. It is important to recall that all of our learners had previous 
exposure and experience with learning traditional inference techniques, and some had 
experiences in teaching such techniques. In our group of learners, we only had two who had 
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previous experience in using a repeated sampling approach in their own curriculum materials 
with their students. Thus, our sequence of tasks was designed with all these learners in mind. 
However, we believe the key conceptualizations we have outlined would be useful for all 
learners to develop if we want them to develop a general model of one can use a repeated 
sampling approach to inference. We also suggest that using a models and modeling 
perspective to task development that places particular emphasis on learners developing their 
own models (not prescribed by teachers or curriculum materials) would be useful to guide 
further classroom-based research.   
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APPENDIX: FIVE DIAGRAMS CREATED BY PARTICIPANTS 
 

 
 

Diagram A 
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Diagram B 
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Diagram C 
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Diagram D 
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Diagram E 
 


