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ABSTRACT 
 
There exists considerable and rich literature on students’ misconceptions about 
probability; less attention has been paid to the development of students’ probabilistic 
thinking in the classroom. Grounded in an analysis of the literature, this article offers 
a lesson sequence for developing students’ probabilistic understanding. In particular, 
a context familiar to teachers—exploring compound events that occur in a game of 
chance—is presented, and it is demonstrated how the context can be used to explore 
the relationship between experimental and theoretical probabilities in a classroom 
setting. The approach integrates both the content and the language of probability and 
is grounded in socio-cultural theory. 
 
Keywords: Statistics education research; Teaching probability; Socio-cultural 

theory; High-school students; Language issues  
 

1. INTRODUCTION 
 

“Life is a school of probability.” (Bagehot, 1956, p. 421) 
 
As the above quote suggests, probability pervades almost everything we do: To name 

only a few examples, probabilities related to side effects of medication, risks of 
household accidents, and environmental impacts regularly appear in the news media and 
in research reports (Gigerenzer & Gray, 2011; Woolfson, 2012). The principles and 
concepts of probability are also used in analysing games of chance, genetics, and making 
weather predictions (Greer & Mukhopadhyay, 2005).  

Probability spans a number of disciplines, including physics, economics, and the 
sciences, because of the wide range of applicability of its principles and concepts. It 
provides the foundational theory for the development of statistics and is essential in 
understanding any inferential procedures used in this field. Generally speaking, 
probability offers a tool for modelling and simulating reality, which can provide a link 
between mathematics and the real world (Borovcnik, 2008; Greer & Mukhopadhyay, 
2005). Gal (2005) suggests that attention to real-world demands should be part of the 
considerations that guide what gets taught, assessed, and valued in the statistics 
classroom.  

In recognition of the importance of probability in both school and out of school 
settings, there has been a movement in many countries to include probability at every 
level in the mathematics curriculum (Kazima, 2007; Nacarato & Grando, 2014; Paul & 
Hlanganipai, 2014; Watson, 2006). In New Zealand (Ministry of Education, 2007), 
probability is one of the three sub-strands in the mathematics curriculum and viewed as 
critical in the learning of mathematics and statistics. The use of meaningful contexts and 
drawing on students’ experiences and understandings is recommended as a way of 
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enhancing students’ understanding of probability (Garfield & Ben-Zvi, 2009; Ministry of 
Education, 2007; Watson, 2006). 

 Despite the importance of probability in everyday life and in school settings, a 
number of research studies (Amir & Williams, 1999; Chiesi & Primi, 2009; Fischbein & 
Schnarch, 1997; Jones, Langrall, & Mooney, 2007; Lecoutre, 1992; Rubel, 2007; 
Sharma, 2014; Watson, 2006; Zazkis & Chernoff, 2008) from different theoretical 
perspectives and cultures show that students tend to hold certain beliefs about probability 
that negatively impact their learning. For instance, Borovcnik (2008) found that 
misconceptions about probability can affect people’s decisions in important situations, 
such as those involving medical tests, jury verdicts, and investments. Therefore, 
instruction in probability should provide experiences during which students have the 
opportunity to confront their misconceptions and to develop understandings based on 
probabilistic thinking. However, though there exists considerable literature on students’ 
misconceptions in probability, less attention has been paid to the development of 
students’ probabilistic thinking in the classroom (Jones et al., 2007; Nacarato & Grando, 
2014; Nilsson, 2013; Paul & Hlanganipai, 2014; Zawojewski & Shaughnessy, 2000).  

At the same time, during the last two decades, there have been calls for a shift in the 
approach to the teaching and learning of probability in order to meet the needs of a 
knowledge society (Cobb & McClain, 2004; National Council of Teachers of 
Mathematics, 2000). A major aspect of the reform is the move from traditional, teacher-
centred classrooms that focus on delivering content to classrooms where discourse and 
conceptual development are central (Cobb, 2007; Garfield & Ben-Zvi, 2008; Van de 
Walle, Bay-Williams, Lovin, & Karp, 2014). In particular, it is argued that students 
should be implicated to the greatest extent possible in explaining, providing evidence, 
finding or creating examples, generalising, analysing, making predictions, applying 
concepts, representing ideas in different ways, and articulating connections or 
relationships between the given topic and other ideas (Cobb & McClain, 2004; Van de 
Walle et al., 2014). Teaching approaches that foster these learning goals may also 
engender in students a willingness to engage in challenging tasks and to take risks 
(Sullivan & Mornane, 2014). These ideas resonate with the principles of socio-cultural 
theory, which will be discussed in Section 2.1. 

This article attempts to address the issues discussed above by offering an open-ended 
lesson sequence for teaching probability. The approach integrates various conceptions of 
probability and is grounded in socio-cultural theory. The article consists of five major 
sections. This first section provides the theoretical background for the teaching sequence 
advocated in this article, discusses some characteristics of socio-cultural theory, and 
examines various approaches to probability that have relevance for teaching this topic. 
The second section summarizes research in probability education, in particular 
highlighting student misconceptions and potential language barriers. Section 3 reviews 
research on teaching probability. Section 4 provides a possible lesson sequence for 
exploring and developing probability ideas, which is also intended to link the concrete 
(experimental) and abstract (theoretical) notions of probability. Finally, the article 
concludes with a few reflections.  
 

2. THEORETICAL BACKGROUND  
 

2.1.  SOCIO-CULTURAL THEORY  
 
Socio-cultural theory derives its origins from the work of socio-cultural theorists such as 
Vygotsky (1978) and Wenger (1998), who suggest that learning should be considered 
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more as a product of social, cultural, and political influences and less as an individual 
activity. Vygotsky (1978) argued that learning first occurs in the context of shared social 
activity known as the social or interpersonal plane, and is followed by development on 
the individual plane. Learning in these two planes can occur in any context, whether 
during mathematics lessons, in the workplace, or in the home. There is a strong emphasis 
in socio-cultural theory on social interactions, language, experience, collaborative 
learning environments, catering to cultural diversity, and meaningful contexts in the 
learning process, as opposed to a focus solely on the learner’s cognitive abilities (Cobb, 
2007). According to this theory, children’s knowledge, ideas, and values develop through 
interactions with others; hence, language is seen as playing a central role in cognitive 
development. 

Mediation is a key concept in Vygotsky’s theory, which describes the shift from the 
social plane to the psychological plane (Wertsch, 1985). Vygotsky argued that higher 
mental processes are mediated by tools (i.e., technical tools, such as calculators) and 
signs (i.e., psychological tools, such as language). Learning takes place when these 
different forms of mediation create a transformation in mental functioning. 

The notion of the zone of proximal development (ZPD) is another key feature of 
socio-cultural theory. Vygotsky (1978, p. 86) introduced the notion of the zone of 
proximal development as follows:  

[The ZPD] is the difference between [a child’s] actual development level as 
determined by independent problem solving and the level of potential development 
as determined through problem solving under adult guidance or in collaboration 
with more capable peers.  

In other words, Vygotsky argued that intellectual development occurs within the ZPD 
of the child when assisted by a more knowledgeable individual. At the centre of the zone, 
the learner needs a high degree of assistance from a more experienced person in order to 
carry out the task. Such assistance could be provided during teaching in the form of 
guidance and/or collaboration. Over time, the outer limit of the ZPD is reached, when the 
“learner eventually becomes able to carry out what was previously a joint activity and can 
independently complete the task” (Cobb, 2007, p. 21). One implication of this theory is 
the idea that students learn most effectively when classroom conversation is within their 
individual zones of proximal development. Teachers can aim to target these zones to 
provide students with the right amount of challenge to avoid boredom on the one hand 
and anxiety on the other (when the challenge is beyond the students’ capability).  

To summarize the above, socio-cultural theory not only positions the learner as being 
actively engaged in seeking meaning during the learning process, but also suggests that 
the learner can be assisted by working with others who are more knowledgeable (Van de 
Walle, et al., 2014; Watson, 2006). This idea can be applied to the learning of probability. 
For example, when students are learning about experimental probability, teachers may 
have students collect data to explore the probability of various events, such as those that 
can be observed when flipping two coins. Students may initially think that two heads, two 
tails, and one head and one tail are equally likely outcomes (Lecourte, 1992; Watson, 
2006) and, therefore, that each has a probability of 1/3. A more knowledgeable person (a 
peer or the teacher) will know that if a large number of trials is performed the data will 
suggest that that the outcome “one head and one tail” actually has a 50 percent 
probability of occurring, and that creating a list of all possible outcomes will help 
students understand why the numerical probabilities of these outcomes are different. This 
more knowledgeable teacher or peer can draw students’ attention to the critical idea that 
the possible outcomes in an experiment are related to probability.  
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2.2.  APPROACHES TO PROBABILITY 
 
People think about probability using at least three different approaches: theoretical, 
experimental, and subjective. If students are to develop a meaningful understanding of 
probability, it is important to acknowledge these different approaches as well as to 
explore the connections between them and the different contexts in which one or the 
other may be most useful. Because the first two approaches in particular (theoretical and 
experimental) have relevance for this article, they are discussed in more detail below.  

The theoretical approach to probability assumes that it is possible to represent the 
sample space (all possible outcomes) as a collection of outcomes with known 
probabilities. When the outcomes are equally likely, the probability can be determined by 
counting the number of favourable outcomes and dividing by the total number of 
outcomes in the sample space. This approach to probability enables one to calculate 
probabilities before any trials are performed. For example, the probability of rolling a six 
on a regular six-sided die is determined to be 1/6, because this event represents one out of 
a total of six equally likely outcomes. One could also examine the symmetry of a regular 
six-sided die to estimate that the probability of rolling a six is 1/6. In both cases, the 
theoretically derived probability is an estimate of the simple case of rolling a die. 
Although the outcomes of rolling a die or other chance games can be explained by 
theoretical probability, more complex situations in everyday life (e.g., weather events, 
accident risks, and epidemics) require other approaches. Even in some classroom 
situations, theoretical probability is impossible to calculate. For instance, when rolling an 
unfair die, the only way of estimating the actual probability of an event may be to 
perform an experiment with a large number of trials.  

Experimental approaches to probability, in contrast, assume that the probability of a 
given event can be determined through experimentation. Experimental or empirical 
probability is said to be posterior, in that the probability of an event is determined from 
the observed relative frequency of that event over the course of several trials (Borovcnik, 
Bentz, & Kapadia, 1991). Like theoretical probability, empirical probability also involves 
computing ratios, but in this case it is determined by dividing the number of times an 
event occurs by the total number of trials performed. As the number of trials increases, 
the experimental probability tends towards the theoretical probability of an event. By 
comparing inferences from their theoretical and empirical work, students can evaluate 
and modify their initial hypotheses.  

From a practical point of view, the frequentist (experimental) approach does not 
provide the probability of an event when it is physically impossible to repeat an 
experiment a very large number of times. For example, it is impossible to conduct 
repeated trials to estimate the probability that one will live beyond 70 years or that one’s 
house will be burglarized within a year. It is also difficult to decide how many trials are 
needed to obtain a good estimate for the probability of an event. Moreover, it is not 
possible to obtain a frequentist estimate of the probability of an event that only occurs 
one time under certain conditions. Another potential issue is the possibility of confusing 
models with reality. Indeed, in the view of Batanero and colleagues (2005, p. 23), “the 
most significant criticism of the frequentist definition of probability is the difficulty of 
confusing an abstract mathematical object with the empirical observed frequencies, which 
are experimentally obtained.”  

Although determining the theoretical probability of an event may appear to be 
straightforward, students often have considerable difficulty doing so. Some of these 
challenges are examined in the next section. 
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3. RESEARCH IN PROBABILITY EDUCATION 
 
3.1.  PREVIOUS STUDIES 

 
As mentioned earlier, a number of research studies from different theoretical perspectives 
and cultural contexts show that students tend to hold certain beliefs about probability that 
negatively impact their learning. Some common beliefs, biases, heuristics, and other 
issues that inhibit the learning of probability which are of relevance to this article are 
discussed next.  
 

Equiprobability Lecoutre (1992) utilized several forms of a task that required college 
students to compare the probability of rolling a five and a six on two dice, in any order, 
with the probability of rolling two sixes. About half of the students in the sample 
indicated that these events are equally likely. Lecoutre called this phenomenon the 
“equiprobability bias”: the tendency to view the random nature of the trials of an 
experiment as sufficient indication of equiprobable outcomes. The typical justification of 
such a response, as reported by Lecoutre, is that the two events are equiprobable because 
“it’s all about chance.” As Lecoutre found, the equiprobability bias tends to be highly 
resistant to change.  
  Fischbein, Nello, and Marino (1991) reported similar results among elementary and 
middle school students who responded to a problem involving two coins, and 
Zawojewski and Shaugnessy (2000, p. 237) reported similar findings among 12th graders 
who were asked the following question:  

Suppose you are playing a carnival game that involves flipping two balanced coins 
simultaneously. To win the game you must obtain “heads” on both coins. What is 
your probability of winning the game?  
Approximately 50% of the 12th grade students in the study believed that there is a 

50% chance of winning the game. According to Zawojewski and Shaughnessy (2000), an 
experimental approach can be used to convince students that such ideas need to be 
revised: in this case, as students simulate many trials of the game and see that they win 
approximately 25% of the time, they may become convinced that the chance of winning 
is not 50%.  
 

One-step bias Lysoe (2008) reported that one common strategy in solving problems 
with certain compound events is to transform a two-step problem into a simple event and 
then use the uniform model. Lysoe called this approach the one-step orientated heuristic. 
As an illustration, consider the following problem and argument (Lysoe, 2008, p. 14): 

Anna has three red, two green and one blue pencil in her pen case. She asks Maria to 
pick out two pencils without looking. Anna thinks that the probability that both of the 
pencils are red is 1/5 but Maria thinks that the probability is 1/3. Does either of them 
have the correct answer?  
 
I agree with Maria. [Argument:] There are a total of 6 pencils and Maria picks out 2 
pencils; this leads to the probability 2/6 = 1/3 for red pencils.  
In the above problem, each individual pencil has a probability of 1/6 to be picked. 

Lysoe (2008) writes that the student seems to have selected two of the three red pencils 
and considered the two red pencils as a unit and added the probabilities. In other words, it 
appears that the student has reformulated the two-stage experiment into one-stage task, 
hence reducing the sample space into two events; picking the two red pencils or not.  
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Beliefs Research (Amir & Williams, 1999; Sharma, 2014) shows that some students 
believe that the outcomes of certain events depend on a force that is beyond their control. 
Amir and Williams (1999), for instance, interviewed thirty-eight 11 to 12-year-old 
students in their first year of secondary school about their conceptions of chance and 
luck, their beliefs and attitudes, and their reasoning about probability. Some pupils in the 
study reported that they thought that God controls everything that happens in the world; 
others believed that God chooses which events to control, while and still others believed 
that God does not control anything or does not exist. Other reported beliefs in the study 
were directly related to coins and dice: For instance, some students reported believing 
that a coin landing on “tails” is luckier than landing on “heads.” 

Zimmermann and Jones (2002) studied high school students’ thinking and beliefs by 
presenting them with problems involving two-dimensional probability simulations. One 
that emerged from the study was the finding that some students, although to different 
degrees, seem to believe that simulation cannot be used to model a real-world probability 
problem. Another study showed that if students come to class with strongly held beliefs 
about probability, seeing visualisations of repeated simulation process and resulting 
distribution may not facilitate understanding or cause them to update these beliefs 
(Ireland & Watson, 2009). 

 
Language issues Probability is a complex topic that can be interpreted descriptively 

using words such as “impossible,” “never,” “unlikely,” and so on. However, the way in 
which these terms are used in the mathematical field of probability sometimes differs 
from the way in which they are used in everyday life (Paul & Hlanganipai, 2014; Kazima, 
2007; Lesser & Winsor, 2009; Nacarato & Grando, 2014; Watson, 2006), which may 
hinder students’ communication when learning about probability. As an illustration, 
consider the following task, described in Sharma (2014, p. 109): 

Meena and Ronit have some marbles. Meena is 10 years old. In her box, there are 10 
white marbles and 20 black ones. Ronit is only 8 years old. In her box there are 20 
white marbles and 60 black ones. They play a game. The winner is the child who 
pulls out a white marble first. If both take out a white marble at the same time then no 
one is the winner and the game has to go on. Ronit claims that Meena has a greater 
chance of pulling out a white marble because she is older, and cleverer.  
What is your opinion about this?  
A few students in the study missed the point of the question, focusing rather on 

whether the game was fair. This is reflected in the comment made by one of the students 
(Sharma, 2014, p. 111):  

This is not a fair game; for this, the game should be played by same aged people and 
there should be equal number of marbles in the box.  
Another student explained why it was fair that Ronit, the younger child, had more 

marbles (Sharma, 2014, p. 111).  
At my home I got three brothers so when my father gets two apples, then he gives one 
whole apple to my smaller brother and us two brothers, we get half each.  
In the statistical context, “fair” means that each player has the same theoretical 

chance of winning a game (Watson, 2006). However, in everyday register, “fair” has 
different meanings, such as, “unbiased” or “in accordance with the rules of equity.” The 
first quote appears to have in-school beliefs about fairness while at the same time holding 
contradictory beliefs about the notion in out-of-school situations. Typically, the first 
denotation of a term that comes to mind is its everyday use of the term (Lavy & 
Mashiach-Eizenberg, 2009), which presents difficulties when learning probability. 
English language learners may face an even greater challenge when learning probability, 
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for they must simultaneously learn and work with terms that have both “ordinary” and 
mathematical meanings (Lesser & Winsor, 2009). 
 
3.2.   RESEARCH ON TEACHING PROBABILITY  
 

There are different views on how to best teach probability so that students leaving 
school are able to accurately interpret probabilities in a wide range of situations (Gurbuz, 
Erdem, & Firat, 2014; Jones et al., 2007; Kapadia, 2009; Nilsson, 2013; Paul & 
Hlanganipai, 2014). Some of these views are based on elements of socio-cultural theory 
(Section 2.1) and the different approaches to probability (Section 2.3).  

As discussed earlier, students have many misconceptions about probability (Garfield 
& Ben-Zvi, 2008; Jones et al., 2007; Nilsson, 2013). Additionally, they may have 
difficulty using statistical terms with precision. To address these issues, Gürbüz, Erdem, 
and Firat (2014) conducted a cross-sectional study with grade 6-8 students. Pre- and post-
tests results were compared after an intervention. As part of the learning activities, 
students made predictions, collected, collated, and compared data in groups. The group 
discussions provided opportunities for interaction and support. Students could ask 
questions and receive direct and immediate feedback in a safe learning environment. The 
researchers reported that the collaborative environment and activity-based tasks had a 
positive impact on student learning.  

In another study, Prediger and Rolka (2009) observed a group of 12-year-olds playing 
a game of chance with tokens that moved forward on a playing board according to the 
results of a die roll. The icosahedral die used in the game had more red sides than sides of 
any other colour, and therefore favoured the red token. Observations such as “there are 
more red sides on the die” and “the red token wins more often” were voiced by some 
students. The fierce discussion among the children led to a jointly developed strategy. 
The authors suggest that the verbal communication seemed to generate a better 
understanding of the effectiveness of their tactics, which might not have occurred if they 
had simply observed the game. The studies suggest that collaborative learning aids the 
development of probability concepts.  

Nilsson (2013) distinguished two methodological and analytical directions based on 
the bi-directional relationship between theoretical and empirical probability:  

Mapping direction: Theoretical probability  Experiment  Empirical probability 
Inference direction: Experiment  Empirical probability  Theoretical probability 
Nilsson argued that the direction used depends largely on whether the underlying 

sample space is known by or hidden from students. In cases where the theoretical model 
of a random generator (dice, coins, spinners) is known from sample space considerations, 
students can be challenged to reflect on how the model corresponds to the distribution of 
outcomes that the random generator produces. In cases where the theoretical probability 
is hidden or impossible to determine by sample space considerations, teaching can focus 
on developing students’ abilities to make informal statistical inferences about empirical 
probabilities and to connect experimental information to theoretical probability.  

The ability to generate all of the possible outcomes of a random process is essential in 
developing a theoretical model for the probabilities of the various outcomes of the 
process. In their study, Horvath and Lehrer (1998) demonstrated how children in grade 2 
(aged 7–8) and grades 4–5 (aged 9–11) are able to develop an understanding of how a 
theoretical sample space maps to a corresponding experimental data distribution after 
being introduced to a notational system for organizing the sample space. However, when 
the results of an experiment differed from their predictions, the grade 2 students turned to 
the data rather than to the theoretical sample space for making new predictions. That is, in 
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a natural manner, they changed from the mapping direction to the inference direction. 
The older students, on the other hand, tended to rely on the sample space for predicting 
how the data would be distributed. The study stresses the importance of teaching students 
to systematically structure the sample space in order to enhance their capacity to 
understand and predict empirical distributions. 

Research by Chernoff and Zazkis (2011) demonstrates students’ difficulties in listing 
all possible outcomes of a random process and in understanding how the underlying 
sample space regulates the probabilities of a random phenomenon. Zazkis and Chernoff 
(2008) suggest that students who wrestle with counter examples that enable them to 
personally experience cognitive conflict are more likely to experience new learning than 
those who are simply presented with expert opinions about concepts related to 
probability.  

Garfield and Ben-Zvi (2009) advocate an instructional sequence that begins with the 
presentation of a meaningful task or problem and continues with an invitation to solve 
that problem in multiple ways, which leads to the sharing, justifying, and discussing of 
those problem solving strategies in small or large groups. The roles assumed by the 
teacher and the students and the environments associated with this type of teaching differ 
from “traditional” approaches (Cobb & McClain, 2004; Garfield & Ben-Zvi, 2009). In 
particular, the role of the teacher is to guide and support students in achieving the desired 
outcomes. Traditional approaches tend to be teacher-centred, and concepts or methods are 
transmitted by the teacher. Mathematics ideas are not negotiated and attention is hardly 
paid to context or student prior knowledge.  

A strategy that aligns with elements of the socio-cultural theory of learning and which 
is often used in science education is called “Predict, Observe and Explain.” The strategy 
helps teachers identify students’ zones of proximal development and target these zones to 
provide the right amount of challenge. It can also be used in teaching probability for 
identifying students’ beliefs, prior knowledge, and thought processes, generating 
discussion, and motivating students to explore the relevant concepts (Joyce, 2006). After 
the prediction stage, surprising events create conditions where students may begin to re-
examine their personal theories about probability. The strategy is based on the following 
principles:  

 Unless students are asked to predict first what will happen during an 
experiment, they may not observe carefully. 

 Writing down predictions motivates students to find the answer. 
 Asking students to explain the reasons for their predictions allows the teacher 

to identify the students’ beliefs and theories about a given concept. This can 
be useful for uncovering misconceptions or building on the understandings 
that students already have.  

 Explaining and evaluating their own predictions and listening to others’ 
predictions helps students to begin evaluating learning and constructing new 
meanings. 

The research and theories discussed in this and previous sections informed the 
development of the open-ended lesson sequence described in the next section, which can 
be used to introduce probability concepts to high-school, middle school, and primary 
school students. The activity offers a meaningful context in which students can collect 
their own data and derive both experimental and theoretical probabilities. Younger 
students can solve the problem intuitively and informally through experimentation, 
whereas older students can delve deeper into the problem and look for patterns that may 
help them derive a theoretical model. The lesson sequence exhibits a range of 
characteristics of rich mathematical activities (Breyfogle & Williams, 2008; Sullivan & 
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Mornane, 2014) and includes suggestions for adaptations. Breyfogle and Williams claim 
that a rich mathematics activity makes connection to children’s prior knowledge and 
experiences, is set in a meaningful context, promotes discussion, and can be adapted. The 
sequences described below include all these criteria.  
 

4. A POSSIBLE LESSON SEQUENCE TO EXPLORE THE FAIRNESS OF A 
DICE ROLLING GAME 

 
The lesson sequence described below, grounded in socio-cultural theory, is designed to 
confront student misconceptions about probability so as to allow them to recognize the 
limitations of their intuition and the advantages of experimentation and mathematical 
theory. The sequence starts with a problem, rather than with mathematical theory or 
procedure, and the progression is from the empirical to the theoretical. The students first 
make predictions about the fairness of a game, conduct an experiment, and finally 
compare their predictions with the results of the experiment. It is important that students 
use tools such as technology and work collaboratively in groups or pairs, so that they are 
engaged in authentic conversation and interactions. Data is to be collected and analysed 
systematically to facilitate comparisons between predictions and experimental results.  

The key ideas embedded in the lesson sequence presented below relate to curricular 
objectives (Ministry of Education, 2007) that advocate the linking of theoretical 
probability to experimental probability. It is evident that probability does not exist in a 
language-free vacuum. This means that when teaching students, teachers must not only 
be looking to teach statistics in and of itself, but recognize their dual role as statistics 
teachers and language teachers (Brown, Cadt, & Taylor, 2009; Lesser & Winsor, 2009). 
The sequence below that follows integrates strategies for teaching both probability and 
language. The sequence that follows integrates strategies for teaching both probability 
and language.  
 

Problem The teacher engages the students by posing a question that is set in a 
meaningful context. The following problem will be used to provide a context for the ideas 
this section:  

Esha and Sarah decide to play a dice rolling game. They take turns rolling two fair 
dice and calculating the difference (larger number minus the smaller number) of the 
numbers rolled. If the difference is 0, 1, or 2, Esha wins, and if the difference is 3, 4 
or 5, Sarah wins. Is this game fair? Explain your thinking.  
The teacher should write the problem on the board and ask a student to read it. Then, 

the teacher should guide the class in a discussion about what information is given and 
what is required of them. The ideas discussed should be recorded on the whiteboard to 
help students with language difficulties. Alternatively, the teacher may introduce this task 
a few days before the lesson, collect students’ responses, and examine what the responses 
reveal about their current level of understanding. This will give the teacher the 
opportunity to identify difficulties in advance of the lesson, which may enable him or her 
to help students more effectively during the next phase.  

In this context, “fair” means that each player has the same theoretical chance of 
winning the game. (It is assumed that the dice being used to play the game are themselves 
fair.) Some students may have in-school beliefs about the notion of fairness while at the 
same time holding contradictory beliefs about this notion in out-of-school situations 
(Watson, 2006). The teacher could use the graphic organiser given in Figure 1 to clarify 
and distinguish the statistical meaning from its use in everyday language. Students can 
peer edit and evaluate one another’s responses.  
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Statistical	meaning 
 

Other	meaning(s) 

Picture/Image 
 

Picture/Image 

Figure 1. Graphic organiser to distinguish statistical meaning from other meanings 
 

Making prediction The process of making predictions encourages students to think 
about the problem at hand and may reveal their misconceptions. Later, dissonance may be 
created between their predictions and the experimental results, encouraging the students 
to discard their misconceptions (Ireland & Watson, 2009).  

During this phase, students are given time to think individually about whether the 
game is fair and to write down their predictions and reasoning. Then, in pairs, students 
discuss their ideas and try to explain to each other why they chose the answers they did. 
The students have the opportunity to revise their predictions if they wish.  

The teacher should circulate around the room and observe how students approach the 
task (e.g., whether they are drawing diagrams, working with probabilities, or simply 
writing a description). As they work on the task, the teacher should listen to their 
reasoning carefully and note any misconceptions that arise for later discussion with the 
whole class.  
 

Expected student responses In the situation described above, the probabilities of 
winning are dependent on the rules of the game. Combining simple events such as rolling 
two dice and finding the difference usually creates a much more complex sample space 
than the original event. A single fair die has equiprobable outcomes, whereas outcomes 
involving the difference of two fair dice are not equally likely. However, as discussed in 
Section 3.1, students may hold the misconception that symmetrical objects such as coins 
and dice always produce outcomes that are equally likely (Lecourte, 1992). A few 
students may also demonstrate the one-stage bias in their reasoning (see Section 3.1; 
Lysoe, 2008), and others may think that some numbers are inherently luckier than others 
and thus more likely to come up (Amir & Williams, 1999; Sharma, 2014). The latter 
belief would imply that a six-sided die is not fair. If students do hold this belief—that is, 
that the different numbers on a die have different chances of coming up—a discussion of 
fairness of the dice rolling game described above is likely to be challenging. In this case, 
the teacher may need to introduce another activity which encourages students to examine 
these ideas before going on to the next phase.  
 

Playing the game Students play the game approximately 20 times with a partner and 
tally the results in a frequency table (Figures 2a and 2b provide two different 
possibilities). 
 
 

Outcome Tally Frequency 
Esha wins 
 

  

Sarah wins 
 

  

Figure 2a. Frequency Table  
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Roll	Number Esha	wins Sarah	wins 
   
   
Total	 number	 of	
wins 

  

Figure 2b. Frequency Table  
 

After collecting the data, students record their responses to the following questions 
and then discuss them with another group.  
 

Focus questions 
 Considering your results, do you think the game is fair? Why or why not? 
 If you wanted to win this game, which player would you choose to be? Explain 

your answer.  
 If you played the game 30 more times, would the results be the same as or 

different from the first 20 times you played? If they would be different, how? 
 

The teacher may need to provide some sentence starters to help students write their 
responses: for example, “From the table, it can be seen that … because …” 
 

Expected student responses Some students will notice that the game is not fair since 
as one of the two players wins more times than the other, and will consequently change 
their minds about the fairness of the game. However, some of the students playing the 
role of Esha may say that they can see nothing wrong with the game. The teacher should 
tell them that everyone is going to play again, but that this time, all of the students will 
switch roles (i.e., those playing the role of Esha will play the role of Sarah, and vice 
versa). Some students will almost certainly object to this suggestion.  

Some students may physically examine the dice. Others will hold on to the belief that 
one particular number is luckier than the others. Some might reason that there are six 
possible outcomes (differences of 0, 1, 2, 3, 4, or 5) and that because three have been 
assigned to each player, the game is fair.  
 

Planning explorations During this phase, students plan how they will gather more 
data.  

The teacher should discuss the notion of sample size and suggest justifications for 
why the sample size matters. As a class, the students discuss what kind of experiments 
they could carry out to test their predictions. These experiments could involve physical or 
computer simulations. There needs to be some discussion about how a die should be 
rolled, as it is important that the students roll the dice in the same manner for each trial. 
The teacher should have the students make suggestions about how they will record their 
results. One possibility is given below in Figure 3. 
 

Outcome Frequency of occurrence 
(tally) 

Relative frequency, or 
experimental probability 

0, 1, 2   
3, 4, 5   
Totals   

Figure 3. Possible data recording sheet 
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Focus questions 
 What data will we collect? 
 How will we collect this data? 
 How are we going to record this information? 

 
Data collection and analysis In small groups, data is collected and recorded. Next, all 

of the group results are collated on the whiteboard and analysed. Experimental results are 
compared with students’ initial ideas, leading to the realization that Esha wins more often 
than Sarah. 
 

Focus questions 
 Which differences are possible? 
 Which differences were common? 
 What is the probability of each difference? 

 
Expected student responses Some students may have difficulty working with 

decimals and converting between fractions and decimals, in which case the teacher may 
need to review concepts related to place value. Some will recognize, if they didn’t do so 
during the previous round of trials, that the game is not fair because one of the two 
players wins more often, and may consequently change their minds about the fairness of 
the game. 

Each group could graph their results on posters, which can then be displayed at the 
front of the room. This is a powerful way to compare group results, because students can 
visually identify similarities and differences between the data sets which may not be 
apparent from simply reading the tables of collected data. The teacher may need to 
discuss graphing conventions, such as giving the graph a title and labelling the axes, so as 
to help students communicate their findings to others clearly.  

 
Focus question 

 What is the shape of the plotted data? 
 

The students can use their own language to describe the shapes of the graphs, after 
which the teacher can introduce more precise language: symmetrical, sloped to the left, 
sloped to the right, uniform, non-uniform. The students match these words to their 
graphs.  
 

Introducing the theoretical model In groups, students analyse the game to determine 
why Esha wins more often than Sarah. To answer this question, students need to 
enumerate the sample space in a systematic way. They can propose their own methods for 
listing the possibilities. Some possible approaches are listed next.  
 

In Figure 4, the students first list all of the possible outcomes of rolling two dice. 
 

1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 
2, 1 2, 2 2, 3 2, 4 2, 5  

Figure 4. List of all possible differences when rolling two dice 
 

Note that 1, 2 and 2, 1 represent different outcomes, but will give the same difference. 
One-way to help students understand this is to use two dice of different colours.  
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Students could also draw a table listing all possible differences (Figure 5) and use it 
to find the number of ways of obtaining each one (Figure 6). Both methods reveal 36 
possible combinations, 24 of which represent a win for Esha and 12 of which represent a 
win for Sarah.  
 

 

DICE 1 

D
IC

E
 2

 

 1 2 3 4 5 6 
1 0 1 2 3 4 5 
2 1 0 1 2 3 4 
3 2 1 0 1 2 3 
4 3 2 1 0 1 2 
5 4 3 2 1 0 1 
6 5 4 3 2 1 0 

Figure 5. All possible differences when rolling two dice 
 

Difference  0 1 2 3 4 5 

Number of 
ways to 
obtain 

6 10 8 6 4 2 

Who wins? Esha Esha Esha Sarah Sarah Sarah 

Figure 6. Number of ways of obtaining each difference 
 

Alternatively, a tree diagram can be drawn to find all of the possibilities, although 
this method could be a bit cumbersome. 

Once the students have enumerated the sample space, the probability of each student 
winning the game can be calculated and the responses to prompts, such as the focus 
questions that follow. Students could compare their graphs (experimental data) with a 
graph similar to that which appears in Figure 7.  

 

 
Figure 7. Graph of expected outcomes 

 
Focus questions  

 How do your experimental results compare with your theoretical 
probabilities?  

0
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Differences obtained when rolling two dice
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 Explain why they might differ.  
 Discuss how knowing the probabilities helps you understand why the game is 

unfair.  
 What are the relative advantages and disadvantages of experimental versus 

theoretical approaches to finding probabilities?  
 What is the expected frequency of (say) a difference of four if you roll the 

two dice 72 times? 144 times? 
 How can we change the rules so that each player has the same chance of 

winning? 
 What would the distribution for a completely fair game look like?  

 
Expected student responses Students might reason that the 36 outcomes listed in 

Figure 6 are equally likely. Although this is true, the differences are not equally likely: 
For example, comparing the outcomes of obtaining a difference of 4 and 5 reveals that 
there are four ways of getting a difference 4 and only two ways of getting a difference 5. 
In other words, there are four outcomes favourable to the desired event (getting a 4) out 
of all of the possible outcomes (36), which gives a probability of 4/36 or 1/9 of getting a 
difference of 4. Some students might recognise that the probabilities associated with the 
differences are hierarchically ordered, with the probability of getting a difference of 1 
being the greatest, followed by 2, then 0 or 3, and so on.  

There are many different ways of devising a fair game. One is to say that Esha wins if 
the difference is 0, 2 or 4 and Sarah wins if it is 1, 3, or 5. Another is to say that Esha 
wins if the difference is 1 or 2 and Sarah wins otherwise.  
 

Assessment After the wrap-up discussion, students may be asked to complete a brief 
assessment, providing the teacher with additional feedback about their learning during the 
lesson sequence. For example, the teacher may ask the students to decide whether the 
following statement is true or false and to write down reasons to support their answer:  

Rolling a sum of three with two fair dice is twice as likely as rolling a sum of two.  
 
Possible extension Students could be asked to design a fair game (where each player 

has the same chance of winning) and to test out their theoretical model experimentally. 
The teacher could also introduce other activities involving random generators, such as 
spinners and containers holding coloured blocks, to help students to transfer the concepts 
embedded in the lesson to other situations. For instance, students could be given a graph 
of results obtained from drawing different coloured blocks (e.g., red, yellow, green, and 
blue) 100 times with replacement from a bucket and asked to estimate the number of 
blocks of each colour that would produce the given graph. Data displays can help 
students understand the bi-directional connection between theoretical and empirical 
probabilities. 

The teacher could also extend the activity by discussing the topic of expected value. 
In games of chance, a game is said to be fair if the price paid to enter the game is equal to 
the expected winnings. The gain or loss is the difference between the entry fee and the 
winnings. If the expected gain from the game is 0, the game is fair. Although examples, 
such as the one following often appear in real life situations, expected values are taught 
procedurally at senior levels in school. 

You’re at a carnival and you see the following game: For $2, you can roll a standard 
six-sided die. If the number showing is a six, you win $10. Otherwise, you win 
nothing. Is this a fair game? 
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In order to understand the notion of expected value, students need opportunities to 
develop their understandings through empirical investigations. In other words, students 
should be actively involved in hands-on experiments that motivate them and help them 
construct sound understandings.  
 

5. REFLECTIONS 
 

Many interesting questions that can be posed in the classroom can be addressed 
through the type of lesson sequence presented here. However, teachers should not expect 
one or two experiments to have a substantial impact on students’ beliefs about 
probability. Some studies show that misconceptions about chance may continue to be 
held throughout life (Sharma, 2014; Watson, 2006). However, probabilistic thinking can 
be developed slowly and systematically in appropriate learning environments through 
carefully designed sequences of activities that challenge students to explore, make 
conjectures, and evaluate their reasoning. 

School curricula need to acknowledge the two aspects of probabilistic thinking (i.e., 
experimental and theoretical), and the connections between the two should be reinforced 
over and over again. It is true that in some cases, it is not appropriate to introduce an 
experiment to find relative frequencies before suggesting a theoretical model based on, 
say, geometry or the enumeration of all possible outcomes. However, with the availability 
of computers, graphing calculators, and other tools for simulation, leaving out the data-
collection phase is no longer an option. Hands-on simulation, as well as software 
simulation packages, can be used to explore the nature of probability distributions in 
many problem situations, which also gives students the opportunity to recognize and 
describe variability in data. 

The inclusion of games in probability lessons can be particularly motivating for 
middle school students, as research suggests that the social element of learning is critical 
to students in this age group (Attard, 2012). However, it should be noted that the level of 
engagement may be related to aspects of the game such as competition, rather than the 
mathematics itself. For sustained engagement with games, there needs to be reflection 
about the mathematics involved and some challenge in terms of the probability content.  

It has long been recognized that if we are to become critical citizens in our modern, 
technological society, we need to be able to estimate the probability of given outcomes of 
random processes based on the observed frequencies of the outcomes (Jones et al., 2007). 
However, there are also times when we must estimate the likelihood of an event when it 
is practically impossible to produce empirical evidence of its relative frequency. In such 
cases, we must be able to make predictions based on the composition of the random 
generator, although we must be careful to avoid the equiprobability bias. These two 
approaches to modeling probability support an approach to teaching the topic that aims to 
develop an understanding of both theoretical and empirical probabilities and, in 
particular, the connections and relationships between them (Nilsson, 2009; Van de Walle 
et al., 2014; Watson, 2006).  

The ubiquity of computers and graphing calculators makes the teaching approach 
advocated in this article well suited to today’s classrooms by making it easy to perform 
simulations in probability and statistics. However, although simulations can act as an 
intermediary between real events and theoretical models, it is important to understand 
that simulations may not support students’ learning in all cases, especially if students 
hold strong beliefs about probability that contradict the simulation results. Giving 
students the opportunity to make predictions before running the simulations, and then to 
compare these predictions with the observed results, may help to remedy this issue.  
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By providing a means of measuring the uncertainty that is omnipresent in our 
everyday lives, the principles and concepts of probability support students in becoming 
critical citizens of modern society. To achieve the goal of probability literacy for our 
students, our task as teachers is to provide appropriate learning environments which 
challenge students to make predictions, explore, and evaluate their reasoning (Garfield & 
Ben-Zvi, 2008). The lesson sequence described in this article can challenge students in 
just such a way.  
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