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ABSTRACT 

 
This article reports on a classroom teaching experiment that engaged a group of high 
school students in designing sampling simulations within a computer microworld. 
The simulation-design activities aimed to foster students’ abilities to conceive of 
contextual situations as stochastic experiments, and to engage them with the logic of 
hypothesis testing. This scheme of ideas involves imagining a population and a 
sample drawn from it, and an image of repeated sampling as a basis for quantifying a 
sampling outcome’s unusualness in terms of long-run relative frequency under an 
assumption about the population’s composition. The study highlights challenges that 
students experienced, and sheds light on aspects of conceiving stochastic experiments 
and conceiving a sampling outcome’s unusualness as a probabilistic quantity. 
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1. INTRODUCTION AND BACKGROUND  
 
In educational settings the use of simulation has been advocated as a potentially 

useful pedagogical tool to help students develop meaning for the concepts of probability, 
inference, hypothesis testing, and related statistical ideas (Jones, Langrall, & Mooney, 
2007; Konold, 2002; Mills, 2002; NCTM, 2000; Shaughnessy, 1992, 2007; Stohl & Tarr, 
2002). Indeed, recent developments in introductory statistics curricula centralize the use 
of simulation software as a key innovation (Garfield, delMas, & Zieffler, 2012; Rossman 
& Chance, 2012). This is also a very active area in statistics education research, as 
indicated by the recent proliferation of articles presented at research sessions of the 
ICOTS9 conference of 2014 (e.g., Chance & McGaughey, 2014; Tintle et al., 2014; 
Zieffler, delMas, Garfield, & Brown, 2014). But what is entailed conceptually in 
understanding and using simulations? Further, what challenges might students experience 
in their efforts to design and use simulations to make informal inferences and draw 
probabilistic conclusions about situations that involve conceiving a stochastic 
experiment? This article addresses these questions by reporting on part of a classroom 
teaching experiment that engaged a group of high school students in designing 
simulations within the Prob Sim (Konold & Miller, 1996) sampling and probability 
microworld—a precursor of the sampler tool now integrated into the TinkerPlotsTM 
software (Konold & Miller, 2011). 
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1.1.  PRIOR RELEVANT RESEARCH 
 
A number of notable studies have explored students’ statistical reasoning or 

achievement in relation to their participation in instruction involving the use of computer 
simulations (Biehler & Prömmel, 2010; Chance & McGaughey, 2014; delMas, Garfield, 
& Chance, 1999; Drier, 2000; Konold, Harradine, & Kazak, 2007; Kuhn, Hoppe, 
Lingnau, & Wichmann, 2006; Maxara & Biehler, 2006, 2007; Noll, Gebresenbet, & 
Glover, 2016; Pratt, 2000; Saldanha & Thompson, 2014, 2007; Sedlmeier, 1999; Stohl & 
Tarr, 2002; Tintle et al., 2014; Well, Pollatsek, & Boyce, 1990; Zieffler et al., 2014). 
Some of this research focused on students’ use of specific software features when running 
simulations within a computer microworld, pointing to aspects of such use that shaped 
their conceptual development. A subset of those studies focused on issues pertaining to 
students’ efforts to design simulations per se.  

 
Aspects of using simulations Pratt (2000) explored the development of a pair of 

students’ thinking as they engaged with tasks involving the use of the Chance Maker 
(CM) microworld. CM provided students with virtual spinners and dice whose internal 
workings they could manipulate to specify the number of trials of an experiment, and to 
produce desired distributions of outcomes displayed as pie graphs and dot plots. Tasks 
involved “mending” the devices by manipulating their internal workings in an effort to 
ensure that multiple trials of spinning two spinners or tossing two dice produced a 
distribution of outcomes of their sum that reflected “fair” spinners or dice. Pratt reported 
that such mending activity afforded opportunities for the students to notice that the 
resulting CM graphs produced uniform distributions whenever each possible outcome 
was listed once in the devices’ workings boxes. The students consequently developed a 
conception of fairness that was connected to the equal frequency of different 
combinations of outcomes specified in the devices’ workings boxes. 

Stohl and Tarr (2002) studied the meaning-making processes of a pair of sixth grade 
students as they engaged with tasks involving use of the Probability Explorer (PE; Stohl, 
2002) microworld to simulate experiments and analyze simulated data. PE provided 
students with virtual spinners and dice, enabling them to assign weights to spinners’ 
colors, to specify the number of trials of a sampling experiment, and to choose graphical 
representations to display the results of simulated experiments. Students used these 
features to model pre-given stochastic situations (e.g., spinning a disk comprised of 3 
colored sectors in a given proportion), and to draw connections between empirical and 
theoretical probabilities by comparing the latter with the distribution of outcomes 
produced by running their model in PE as a simulation. Students reportedly learned that 
inferences made on the basis of small samples often led to erroneous conclusions, 
whereas those based on sufficiently large samples tended to be reliable. Drier (2000) 
reported that fourth grade students used PE’s graphical representations of data as objects 
of analysis in the context of exploring an “evening-out” phenomenon among sampling 
outcomes. Through experimentation with the software, students reportedly came to 
recognize that conducting more trials of a sampling experiment tended to produce 
distributions of sampling outcomes that closely resembled what they expected according 
to theoretical probabilities. 

Kuhn et al. (2006) studied high school students’ collaborative use of a networked 
“stochastic experiment” simulation environment that involved modeling and exploring 
the likelihood of certain outcomes in real world contexts (e.g., outcomes of a lottery). The 
simulation environment provided students with virtual tools such as dice and urns that 
enabled them to control parameters such as number of tosses or draws. Students’ 
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experimentation with the software, and their comparisons of the relative frequency of 
outcomes of simulated dice tosses over sufficiently large numbers of trials, provoked 
some to formulate a naïve version of the law of large numbers. 

A salient commonality among these studies was the use of simulation tools that were 
virtual versions of canonical random devices such as spinners and dice. These devices 
provided a high level of transparency to the modeled situations, essentially providing 
students with pre-determined models to use in the modeling process. Additionally, 
although each of these studies engaged students within a microworld that provided 
opportunities for them to easily experiment with, and control, various parameters such as 
the number of trials of a simulated experiment, the focus of the research was not on 
students’ conceptualizations of an experiment. Konold et al. (2007) studied middle school 
students’ use of a different simulation tool—a sampler within the TinkerPlots 2.0 
software (Konold & Miller, 2011)—to generate realistic data that met specified criteria. 
The authors reported that this created opportunities for students to problematize the 
concepts of a case, its attributes, and values thereof. Additionally, the sampler enabled 
students to efficiently run many trials of a simulated experiment, thereby reducing the 
length of the model creation and assessment cycle. Konold et al.’s (2007) report, 
however, did not focus on students’ conceptualizations of the experiments they modeled, 
or what they understood they were modeling with the sampler. More recently Zieffler et 
al. (2014) reported on an interview study of first year university students’ reasoning when 
modeling probabilistic experiments, after they had participated in an instructional unit 
focused on modeling and simulation also involving the use of TinkerPlots’ sampler tool 
(Garfield et al., 2012). Their report highlighted that despite observing a diversity of levels 
of statistical reasoning among the students, the use of TinkerPlots in the context of 
interview activities seemed to support the emergence of a deeper reasoning about 
uncertaintly among some students. Moreover, many students seemed to have internalised 
the TinkerPlots models as evidenced by their mimicking them in their explanations and 
vocabulary prior to being prompted to use the software in interview tasks. Details 
regarding students’ actual construction of models and design of simulations were not, 
however, the focus of the study. 

 
Aspects of designing simulations An explicit focus on aspects of designing 

simulations per se is seen in the work of Noll et al. (2016), and Biehler and colleagues 
(Biehler & Prömmel, 2010; Maxara & Biehler, 2006, 2007). Noll et al. documented the 
thinking of college students enrolled in a simulation-based introductory statistics course 
that engaged them in using TinkerPlots’ sampler tool to design and run simulations that 
modeled situations involving the testing of statistical hypotheses. Despite observing 
substantial gains in the number of students who developed appropriate reasoning about 
statistical modeling and simulation, from pre- to post-instruction, Noll et al. reported that 
half of their students experienced persistent difficulties in building correct simulation 
models and running a single trial of the simulation. The authors identified the design of a 
model with the sampler tool as one of the students’ biggest challenges. In particular, 
students had difficulty identifying the population to be sampled and its composition, and 
envisioning what constituted an appropriate sample and its statistic. Such problems 
suggest difficulties in conceiving of the experiment being modeled and of what 
constitutes a trial of an experiment.  

Biehler and colleagues (Biehler & Prömmel, 2010; Maxara & Biehler, 2006, 2007) 
researched students’ and teachers’ uses of Fathom software (Finzer, 2012) in designing 
stochastic simulations. In one study (Maxara & Biehler, 2006) they reported that students 
tended to prematurely use the software before thinking through the stochastic aspects of 
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their simulation. Similarly, the pre-service teacher participants in a subsequent study 
(Maxara & Biehler, 2007) reportedly experienced difficulties in using Fathom 
successfully because they did not clearly distinguish random variables and events in the 
modeling and planning phase of their simulations, prior to using the software. The 
authors concluded that the planning phase of simulation-design activities should place 
greater emphasis on supporting teacher reflection about the relevant probabilistic ideas, 
and in particular should involve explicitly connecting probabilistic components of their 
stochastic models with the features and constraints of the Fathom environment. Biehler 
and Prömmel (2010) followed up on these implications in a subsequent study involving 
the comparison of two approaches to the planning of stochastic simulations on high 
school students’ learning and simulation-design competencies. One group of students 
completed the plan of their simulation before working on the computer, whereas the other 
group integrated the planning and computer implementation activities. Although both 
approaches were reportedly equally successful in supporting students’ simulation-design 
competencies, the group that separated planning and implementation exhibited 
significantly more uniform solution processes and required significantly less assistance in 
the computer implementation phase of the work. 

Noll et al.’s (2016), Biehler and Prömmel’s (2010), and Maxara and Biehler’s (2006, 
2007) research indicates that creating stochastic simulations can be a very challenging 
endeavor for learners, and suggests that it may be advantageous to have learners separate 
the planning of stochastic simulations from their implementation within the software 
being used. The research reported in the present article is in line with this suggestion; it 
attempts to gain insight into conceptual issues pertaining to the design of simulations 
within a microworld, before their implementation, and it takes a detailed view of 
students’ experiences as they engaged in such design activity. In addition to being an area 
of statistics education about which relatively little is known, its importance is further 
underscored by the recent development, and increasing prevalence, of new statistics 
curricula that centralize the use of computer simulations in the teaching of inference 
(Garfield et al., 2012; Rossman & Chance, 2012). 

 
2. PURPOSE 

 
This article aims to shed light on conceptual operations and challenges entailed in 

construing contextual situations as stochastic experiments, and in conceiving of a random 
sampling outcome’s anticipated unusualness as a statistical quantity. The article is based 
on a classroom teaching experiment which explored the thinking of a group of high 
school students that emerged as they engaged with tasks involving the design and use of 
computer simulations for making informal statistical inferences and testing hypotheses in 
situations involving the construal of a stochastic experiment. I write this article from the 
perspective of a member of the research team that conducted the teaching experiment, 
and as a witness of the instructional interactions that unfolded therein. 

 
3. THEORETICAL FRAMING 

 
Two theoretical perspectives shaped and framed both the design of instruction in the 

experiment, and my analysis of the data generated in it. I refer to the first perspective as a 
stochastic conception of sampling. Drawing on von Mises’ (1957) strong frequentist 
perspective of probability, and on Kahneman and Tversky’s (1982) distributional 
perspective of sampling, this is a conception that entails a fundamental underlying image 
of sampling as a random selection process that can be repeated under essentially identical 
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conditions, and of each resulting individual sampling outcome (i.e., the value of a sample 
statistic) as one amongst a class of such outcomes generated by repeating the process. Liu 
and Thompson (2007) sharpened these important ideas by foregrounding the repeatability 
of the underlying generation process, in what they refer to as a stochastic conception of 
an event: “A person having a stochastic conception of an event conceives of an observed 
outcome as but one expression of an underlying repeatable process (what Horvath and 
Lehrer (1998) called a "trial"), which over the long run will produce a stable distribution 
of outcomes.” (Liu & Thompson, 2007, p. 122). Additionally, Liu and Thompson 
dissected a stochastic conception of an event into the following constitutive network of 
conceptual operations: conceiving of a random sampling process—that is, randomly 
selecting a sample of a given size from a population and determining the value of a 
statistic of interest for that sample; imagining repeating the random sampling process 
under similar conditions; anticipating that repeating the process would produce a 
collection of outcomes (i.e., values of the sample statistic); and understanding that 
although the random selection process produces variability in the outcomes, the 
distribution of outcomes will become stable over the long run (Liu & Thompson, 2007).  

A stochastic conception of sampling was at the core of the instructional agenda of the 
teaching experiment discussed here; it was an explicit goal of instruction that students 
develop such a conception, and instructional tasks and classroom interactions around 
them aimed to foster its development. Accordingly, my analyses of the data generated in 
the experiment drew on this perspective as an interpretive lens and explanatory construct. 

The second theoretical perspective that shaped this study is Thompson’s (1994) 
theory of quantitative reasoning, pertaining to the psychology of conceiving situations in 
terms of quantities and relationships among them. In Thompson’s theory a quantity is 
viewed as a conceptual entity that a person constructs when conceptualizing situations as 
having measurable attributes. This is described schematically: “[Quantity] involves an 
object-image, a conceptualized attribute of the object, a tacit understanding of appropriate 
units of measure, and a quantification process by which one directly or indirectly assigns 
numerical values to the attribute” (Cortina, Saldanha, & Thompson, 1999, p. 467). Also 
see Thompson (1994). 

Thompson’s (1994) theory of quantitative reasoning shaped this study in two 
important and interrelated ways. First, the theory frames the kind of reasoning targeted 
with regard to the statistical ideas addressed in instruction, thus orienting the design of 
particular instructional activities aimed at fostering the development of such reasoning. 
Specifically, the ideas of sample statistic and population parameter were framed in terms 
of measurement and quantity: Numerical data were presented and discussed in instruction 
as measures of sampling outcomes (e.g., measures of an attribute of a collection of items 
selected from a population). Similarly, a population parameter was cast as a measure of 
an attribute of the population of sampled items. Instruction engaged students in working 
with collections of such data values in ways intended to foster their ability to quantify 
attributes of them; in particular, to quantify a sampling outcome’s likelihood or 
unusualness in terms of the outcome’s expected long-run relative frequency. In the 
remainder of the paper I will often refer to this latter idea as quantifying unusualness or 
unusualness as a statistical quantity. 

A second way in which Thompson’s (1994) theory is germane to this study is that it 
is a cognitive-based theory directed toward explicating conceptual operations (von 
Glasersfeld, 1995)—mental images, ways of thinking, and coordinations thereof—by 
which people come to conceive situations quantitatively. The frame of conceptual 
operations oriented my analysis of students’ reasoning about sampling as a stochastic 
event and quantifying their expectation of sampling outcomes. Specifically, this frame 
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provided a useful reference point for describing and explaining students’ reasoning about 
those ideas, and for my choice of appropriate grain size of such descriptions and 
explanations. 

To conclude I emphasize the key idea in Thompson’s (1994) theory that conceiving 
of quantity entails conceptualizing given situations in ways that support thinking of 
attributes embedded within them as measurable. This deeply constructivist idea is 
expressed in this particular study by my stance that a sampling event is not in and of itself 
stochastic, in an ontological sense. Rather, an event must be construed by a person in 
such a way as to support conceiving of the likelihood of its occurrence and its anticipated 
unusualness as statistical quantities. From this perspective, the question of what 
conceptual operations and challenges might be entailed in developing such a construal 
becomes an important focus of inquiry. 

 
4. METHOD 

 
4.1.  PARTICIPANTS  

 
A sample of convenience consisting of eight academically diverse students 

participated in a multi-phase classroom teaching experiment conducted within an intact 
introductory statistics course at a suburban high school in the Southeastern United States. 
Prior to their participation in the experiment, all students had completed a standard 
Algebra II course that included a short unit on statistics and probability. Examination of 
the relevant textbook unit suggested that students had not received instruction in the 
statistical ways of thinking targeted in the teaching experiment (elaborated in the next 
section). A pre-assessment querying students’ intuitions and understandings of sampling 
and inference suggested that they had largely informal and non-stochastic understandings 
of these ideas prior to participating in the teaching experiment. Most understood a sample 
to be akin to a little part of something (Watson & Moritz, 2000), and their ideas of 
variability were focused on differences in outcomes without entailing ideas of repeated 
sampling or distribution. In the next section I summarize the repeated sampling 
experiences students had before the phase of the experiment reported in this article.  

 
4.2.  INSTRUCTIONAL SETTING AND ACTIVITIES 

 
Instructional setting and style Instruction, which was conducted by the lead member 

of the research team, employed activities designed and enacted as discussion-based and 
inquiry-oriented investigations. Instruction emphasized describing and explaining 
statistical ideas and connections among them over the use of formal symbols and 
calculations. The research team negotiated a culture of sense-making in the classroom by 
placing a high premium on, and promoting, active participation such as listening, 
reflecting, questioning, conjecturing, and explaining and describing one’s own and 
others’ thinking about the statistical ideas under discussion.  

Given the team’s dual agenda of conducting research within an instructional setting, 
the instructor employed an atypical teaching style consistent with Steffe and Thompson’s 
(2000) idea of teaching as a method of scientific investigation. In this style, teaching is 
employed as a tool of inquiry into students’ reasoning and conceptions about particular 
mathematical ideas; it is used to influence students’ thinking as much as to generate data 
that serve as a basis for modeling their thinking, both extemporaneously and 
retrposepctively. The style is consequently marked by particular teacher actions that 
could be misinterpreted as simply “telling,” whereas the intent is to assess how particular 
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statements and ideas might be assimilated by students and what accommodations they are 
able to make in trying to understand them. Such actions include regularly probing 
students’ thinking, inciting them to engage in repeated reasoning (Harel & Koichu, 2010) 
and scaffolding their efforts to do so, and pressing them to articulate such reasoning.  

 
Activities and microworld In the phase of the teaching experiment immediately 

preceding the one reported here, students had participated in a sequence of lessons that 
engaged them with both tactile and simulated sampling activities. Those activities 
involved repeating the experiment of selecting a small random sample of objects from a 
dichotomous population, generating values of a sample statistic (e.g., the number of red 
candies in a sample), and creating frequency distributions of those values. Students used 
such distributions as a basis for inferring the underlying population’s composition, and 
for quantifying how unusual a particular sampling outcome was in terms of its observed 
relative frequency. In that context students developed the idea that a particular value of 
the sample statistic would be judged as “unusual” if it occurred infrequently in the 
distribution of the statistic (Saldanha & Thompson, 2007).  

In the subsequent phase of the experiment—the basis for the present article—students 
engaged in activities involving the design of sampling simulations within the Prob Sim 
microworld (Konold & Miller, 1996). Figure 1 displays the Prob Sim user interface. 

 
 

 
 

Figure 1. The Prob Sim user interface, data display, and analysis windows 
 
Prob Sim employed the metaphor of a “mixer” for a population, and a “bin” for a 

sample. It enabled the user to easily specify a population’s composition and size, the size 
and selection method of a sample (with or without replacement), and the number of trials 
of the simulated sampling experiment to be conducted (Figure 1, left side windows). 
Moreover, the software displayed the outcome of each simulated sampling experiment as 
a raw data list. Finally, Prob Sim provided summary analyses of the aggregated 
outcomes, and displayed their distribution as a relative frequency histogram (Figure 1, 
right side windows). 

The simulation design activities asked students to explore questions of the type “is 
event x unusual?” Students were presented with scenarios in textual form that described a 
given situation in non-statistical terms, and that framed such questions for them to 
explore. Their task was to design a simulation, guided by the constraints of the Prob Sim 
interface, to run the simulation, and then to draw a conclusion on the basis of its results. 
Figure 2 displays an example of a simulation design activity discussed later in this report. 
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Investigating “Unusualness” 
 
Ephram works at a theatre, taking 
tickets for one movie per night at a 
theatre that holds 250 people. The 
town has 30,000 people. He estimates 
that he knows 300 of them by name. 
   Ephram noticed that he often saw at 
least two people he knew. Is it in fact 
unusual that at least two people    
Ephram knows attend the movie he 
shows, or could people be coming 
because he is there? (The theatre holds 
250 people) 
 
 
1. Assumptions for your investigation: 
 
2. Method of investigation: 
 
3. Result: 
 
4. Conclusion: 

 

 
Figure 2. A task involving the design of a sampling simulation (left panel) and the use of 

Prob Sim (right panel) to investigate the issue of whether a particular outcome is unusual 
(adapted from Konold, 2002) 

 
The activities shared a common feature and structure: Students were presented with a 

contextual situation that involved investigating whether there was reason to believe that a 
specified event of interest was unusual, and they were provoked to structure their 
investigation according to the guidelines suggested by the four prompts shown in Figure 
2. The simulation design activities unfolded over four 45-55 minute class periods held on 
consecutive school days. These sessions involved whole-class discussions directed at 
having students think and describe how they would use Prob Sim to investigate and 
resolve the question raised in a given situation.  

 
Intent of the activities An important clarification is warranted here regarding the 

intent of these activities: The overarching instructional goal was not that students would 
become skilled at designing such simulations per se. Rather, the primary aim was to 
provide students with occasion to construe contextual situations as idealized probabilistic 
experiments, and to thus provoke them to grapple with whatever complexities might be 
entailed in doing so. The research team reasoned that such a construal involves 
conceptualizing a scheme composed of the following key ideas: an imagined population 
and sample to be drawn from it, a method of selection, and repeated sampling and its 
aggregation into a distribution of outcomes as a method for exploring the relative 
unusualness of a particular sampling outcome under an assumption about the population’s 
composition. As such, the activities were designed to promote students’ conceiving of 
probabilistic situations (Konold, 1989), sampling as a stochastic event, and to engage 
them with the logic of statistical hypothesis testing. It is important that the reader keep in 
mind the intended goal of these activities when considering the analyses and results of the 

“Gut level” answer: 
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study, as those focus only on issues that emerged in students’ efforts at design, and not on 
issues pertaining to the actual implementation or running of the simulations.  

I must also emphasize that the research team had already devoted considerable effort 
to developing the above-mentioned key ideas with students in the preceding phase of the 
experiment (Saldanha & Thompson, 2007). However, in contrast to the sampling 
activities in that phase, the simulation design activities in the current phase aimed to 
extend students’ abilities to conceptualize probabilistic experiments in situations that 
were not explicitly cast in statistical terms or that mentioned canonical objects (e.g., cards 
or coins) which could serve as surface cues for how to proceed. To help students 
transition to the simulation design activities using Prob Sim, they were preceded by 
discussions around demonstrations of the microworld that established the concepts of 
random sample and population, making an inference from the former to the latter, and 
sampling with and without replacement. Students subsequently spent some time 
experimenting with the microworld in pairs. 

 
4.3.  DATA CORPUS AND ANALYSIS 

 
This report draws principally on the classroom discussions that unfolded around the 

simulation design activities, to illustrate issues that students grappled with during their 
efforts to design the simulations. These discussions were captured on audio-video 
recordings of the classroom sessions and then transcribed for detailed analysis. 
Additional evidence is drawn from students’ written responses to a post-experiment test 
question that queried their thinking about a key idea addressed in the simulation design 
activities. 

Analysis of the classroom discussions began with a chronological viewing of the 
lesson videos, resulting in the creation of an outline of each lesson and the activity 
sequence across them, and in the identification of episodes that evidenced apparent 
challenges and difficulties experienced by students (Powell, Francisco, & Maher, 2003). 
These flagged episodes were examined in detail in a second phase of analysis, wherein I 
generated initial interpretations of them. This entailed describing the activity in which 
each episode arose, characterizing the content of the discussions that emerged therein, 
with a focus on the mathematical thinking that students expressed in those discussions, 
including challenges and difficulties that they seemed to experience. In this second phase, 
I employed quantitative reasoning theory (Thompson, 1994) as an interpretive lens; 
discussions were analyzed for whether, and to what extent, students were thinking about 
the activity situations in ways consistent with a stochastic conception of an event and 
therefore amenable to conceiving of a sampling outcome’s anticipated unusualness in 
terms of long-run relative frequency. In particular, I characterized the focus of students’ 
images, mental actions, and coordination thereof, as pointers to the ways in which they 
might or might not have been composing and connecting ideas. In a third phase of 
analysis I examined these characterizations in chronological order for prevalent or 
recurrent themes across them, with a particular interest in whether the challenges and 
difficulties identified across episodes were transient or persistent and arguably robust. 
This across-episode analysis was especially important given the nature of the classroom 
discussions; students’ utterances and contributions within individual discussions were 
often tentative or halting, and heavily guided or eclipsed by the instructor’s ideas and 
attempts to scaffold students’ thinking. It was in the aggregate, by examining multiple 
discussions across the sequence of activities, that I was able to identify thematic issues 
and difficulties experienced by students.  
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The post-test question queried students’ abilities to operationalize “unusual event” in 
quantitative terms. Students’ responses were coded for whether they expressed key 
components of an understanding that are largely consistent or inconsistent with the 
understanding targeted in instruction. This coding was supplemented by more fine-
grained analysis of the responses that characterized how their key features differed from 
the targeted conception and what those suggested about students’ underlying images and 
coordination thereof.  

 
5. RESULTS 

 
The study’s findings are framed in terms of two central themes that emerged from my 

analysis of students’ engagement in the simulation design activities: 1) conceiving a 
sampling outcome’s anticipated unusualness as a statistical quantity, and 2) construing a 
contextual situation as an idealized stochastic experiment. Although these themes point to 
interrelated conceptual issues, they are discussed separately for the sake of clarity. These 
themes are illustrated primarily with evidence drawn from the classroom discussions, and 
secondarily with the students’ post-test responses.  

 
5.1.  THEME 1: QUANTIFYING UNUSUALNESS 

 
The first situation with which students engaged was adapted from the so-called 

“birthday problem” (Figure 3) (Konold, 2002):  
 
Jill was in a class of 25 people. The teacher asked each student for his or her birthday 
to enter in the class calendar. The class was surprised when two people had the same 
birthday! Is this, in fact, an unusual event? 
 

Figure 3. The birthday problem 
 
A discussion about this situation emerged out of the instructor’s effort to solicit 

students’ ideas about the meaning of unusual event; the synonyms “surprising” or 
“unexpected” were widely offered by students in response. The following discussion 
excerpt starts from the point immediately after students offered these interpretations; it 
indicates students’ lingering thinking with regard to this idea.  

 
Excerpt 1 (Lesson 5) 

1. Intr: […] So what does it mean for an event to be unusual? 
2. Peter: You’re not expecting it. 
3. Kit: You don’t expect it. 
4. Instr: Yeah, it’s unexpected, that in a large number of times that you do this (2- second 

pause) you, you, you expect to see it rarely. Ok? (2-second pause) All right, so in 
this particular case what does it mean that, to wonder if the event that’s described 
is unusual? 

5. Peter: You wouldn’t expect 2 people in a cla—in a group of 25 people to have the same 
birthday. 

6. Instr: Ok. Now, you’re leaving out something. That’s good as far as you went, but 
you’re leaving something out […] Are we talking, when we talk about an event 
being unusual, are we talking about just one occurrence? 

 (4-second silence) 
7. Instr: Are we just talking about that one class? 
8. Luke: No. It’s unusual—as many times as you did this test with the class, it would be 

unusual for 2 people to have the same birthday. 
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9. Instr: So you wouldn’t expect it to happen very often. 
10.  Luke: Correct. 
11.  Instr: But the idea, the part that you, uhh both of you left out, uhh Peter and Kit, was if 

you looked at a whole bunch of classes, of size 25, you wouldn’t find very many. 
You see? You left out the part of looking at a whole bunch of classes. All right? 
And (2-second pause), and that’s, that’s, that’s a key idea. The idea that what 
we’re talking about is doing something a large number of times, looking at a class 
of 25 students. Ok? 

 
Students’ descriptions generally suggest that their ideas about unusualness were not 

of a quantitative nature. Their images were focused on individual occurrences, and not 
embedded within an imagined sequence of trials of a repeatable sampling experiment that 
might support quantifying likelihood or unusualness in terms of long-run relative 
frequency. Indeed, ideas of (relative) frequency were still largely absent from students’ 
thinking and discourse. It was the instructor who oriented the class to such quantification 
by explicitly pointing out what idea students were leaving out of their thinking, by 
couching unusualness in terms of infrequency and re-casting the situation in terms of a 
repetitive process (see line 11). Luke’s response (line 8) is arguably exceptional, as it 
suggests that the idea of frequency was part of his conception of unusualness. However, 
his was still a very implicit image of frequency (“as many times as you did this test”). 
Luke’s allusion to the idea of “testing” something appears to have been rooted in his 
image of repeating some process and determining whether the event of interest, “two 
people with the same birthday,” was observed. However, Luke did not articulate what 
that process might be.  

In addition to illustrating aspects of students’ thinking at that juncture of the 
experiment, Excerpt 1 also illustrates the type of thinking targeted in instruction, as 
articulated by the instructor’s utterances. The instructor’s characterization in the above 
excerpt (line 11) aimed to build on students’ experiences with repeated sampling gained 
in the preceding phase of the teaching experiment.  

Excerpt 2 (following) is from the opening discussion of the subsequent day’s lesson, 
in which the instructor aimed to recap the idea of framing unusualness in quantitative 
terms, as a long-run relative frequency. The excerpt illustrates both the robustness of 
students’ non-quantitative conceptions of unusualness, and its resistance to an easy 
“repair” in the form of characterizations provided by the instructor in the previous day’s 
discussion. 

 
Excerpt 2 (Lesson 6) 

1. Instr: Uhh, in last class we looked at how, how, ways in which we could investigate 
whether or not something was unusual. All right? Now, what did it m—what 
did we mean by saying that something was unusual?  

2. Luke: It happens less than 50% of the time. 
3. Instr: Or uhh, was that it? I mean, if it happened 49% of, like, is it unusual to get a 

tail if we toss a head? 
4. Michelle: Unexpected 
5. Luke: Yeah, it’s unexpected. 
6. Instr: All right, it’s unexpected. And how, how would you quantify that? 
7. Michelle: How would we what? 
8. Instr: How would you quantify that, that it’s unexpected? 
9. Nicole: I mean— 
10. David: It doesn’t usually happen. 
11. Instr: That’s not quantifying it. That’s putting it—what, what does that mean? 
12. Luke: Rephrase it, David 
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Excerpt 2 illustrates students’ continuing disinclination to think of unusualness in 

quantitative terms. Luke’s response (line 2) seems exceptional, in that it apparently 
entailed the idea of relative frequency. However, I note an important subtle distinction: 
His focus was on a numerical criterion (50%) for deciding whether an event is unusual, 
rather than the process by which one might arrive at such a criterion. As such, from an 
expert observer’s perspective, Luke responded as if the question had been “below what 
cut-off proportion do we call an event ‘unusual’?” rather than “how can we think about 
an event so that we can determine how ‘unusual’ it might be?” This suggests that Luke 
did not yet possess the latter way of thinking, which would explain difficulties in 
conceptualizing the underlying situation in terms that support his conceiving unusualness 
quantitatively. 

Responses like David’s “it doesn’t usually happen” (line 10) amount to a non-
quantitative rephrasing of “it’s unexpected,” and were quite common in the earlier phases 
of the discussions. In a sense, the students and the instructor were speaking different 
languages; the students were living largely in the realm of feeling and intuition, whereas 
the instructor was attempting to nudge them into a quantitative mindset by provoking 
them to map those intuitions onto a relative frequency perspective. Excerpts 1 and 2 
naturally raise the possibility that students’ difficulties were due to a miscommunication; 
students may have simply been unaware of, or not understood, the instructor’s exacting 
requirement for expressing unusualness in quantitative terms, and were therefore playing 
a different game. Although this possibility cannot be discounted, it is inconsistent with 
the fact that students had, in the preceding phase of the teaching experiment, already used 
the idea of repeated sampling as a basis for quantifying a sampling outcome’s 
unusualness in terms of long-run relative frequency. A more plausible explanation is that 
students were not bringing their prior ways of thinking to the current situations, which 
were cast in non-statistical terms, and which lacked any explicit cues to do so.  

 
Generating and composing requisite images The next two data excerpts are 

contiguous segments drawn from the classroom discussions around the “movie theatre 
scenario” (Konold, 2002) displayed in Figure 2. The excerpts illustrate both the 
instructional challenge of helping the students assume the quantitative perspective, and 
the tenuous and fragile nature of their efforts to negotiate a transition to it. More 
specifically, the excerpts highlight two particular aspects that were problematic for 
students in the quantification process: namely, generating and coordinating images 
necessary for quantifying unusualness as a relative frequency. Excerpt 3 highlights Kit’s 
thinking. 

 
Excerpt 3 (Lesson 6) 
400. Instr: Let’s all make sure that we know what’s going on. What is, what is it that’s at 

issue? 
 (7-second silence) 

401. Instr: Kit? 
402. Kit: Whether or not it’s unusual for him to see at least 2 people that he knows. 
403. Instr: And what does it mean, what does “unusual” mean? 
404. Kit: Not expected. 
405. Instr: Ok. Go on and quantify that. 
 (5-second silence) 
406. Instr: It means if he were, if he were to do this many many times he would expect 

some small fraction of the time for this to happen, to see—see, keep, you gotta, 
I want you to keep putting this idea of repeating an event over and over and 
over again. (3-second pause). Ok, it’s not a matter of feeling like “gosh, I don’t 
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expect this to happen.” That’s not where likelihood is determined! Likelihood is 
determined in the actual repeating. Not your feeling about it, but rather the 
repetition of the event and the fraction of the time that something happens in 
those repetitions. Ok? So now, Kit, once more: what is, what does it mean to be 
unexpected? 

407. Kit: Uhh, a small fraction of the time, when it’s done several times. 
408. Instr: Ok, and what is the “it” in this case? 
409. Kit: Uhh, the people—uhh seeing more than 2 people or 2 people one time per night, 

that he knows 
410. Instr: Ok, so over many, many nights, assuming he’s there just once a night, over 

many, many, many nights, we have a small fraction of those nights where he 
sees 2 or more people that he knows. Now, do you see how that quantifies, 
brings, brings ideas of quantity into it? It’s no longer just a feeling that he has 
about expectation. It’s rather, we’re talking about repeating something many, 
many times and just looking at the fraction of the time that something happens! 
(3-second pause) Now you’ll, it’ll—it’ll get so that this is second nature to you 
to start thinking this way. And you’ll also wonder how you could’ve thought 
any other way. But it takes practice, and I, that’s why I keep insisting that you 
bring this idea out in the open. 

 
Kit evidently understood the issue to be whether the event of interest—seeing two or 

more acquaintances in the movie theatre—is unusual. However, her sense of unusualness 
seemed non-quantitative, as indicated by her utterance in line 404 and her lack of a 
response to the instructor’s prompt to quantify “unexpected” (line 405). The instructor 
then highlighted the difference between having a mere feeling that something is 
unexpected and thinking about expectation quantitatively, in terms of an imagined 
process that could be repeated many times and then considering the relative frequency 
with which the event of interest is observed (line 406). Kit’s subsequent attempt to 
describe “unexpected” in quantitative terms (lines 407 and 409) points to important 
aspects of her thinking. On the one hand, it indicates the prominence of the idea of “a 
small fraction of the time,” and that she might therefore have been mindful of an 
underlying repeatable process. On the other hand, Kit’s description is tenuous, and 
suggests an ambiguity in her thinking with regard to distinguishing the process being 
repeated and observing the event of interest; her response to the instructor’s call for 
clarification of the referent for “it” (lines 407-409) indicates that she imagined that 
observing two (or more) acquaintances in the movie theatre was itself the process being 
repeated. Thus, Kit seemed mindful of two images—repeating a process and observing 
the outcome of interest—but she was not apparently coordinating them to imagine this 
scenario: Repeat the process of looking in the movie theatre once per night, on many 
nights, and keep track of the number of such repetitions together with the number of 
nights in which you recognize at least two people.  

The significance of Kit’s ambiguous referent for “it” in Excerpt 3 is that it highlights 
the important issue of the coordination of images necessary to construe the given scenario 
in a manner that could support quantifying the event’s likelihood or unusualness. As 
reflected by the instructor’s description (line 410), this construal can be seen to involve a 
two-image scheme, each entailing a sense of something accumulating: One image entails 
accumulating the number of repetitions of the observation process (i.e., looking in the 
theatre each night), whereas the other entails accumulating the number of times the event 
of interest “two or more acquaintances” is observed. Conceiving the event’s likelihood as 
a quantity entails distinguishing and coordinating the two images, keeping mental track of 
each accumulation, and comparing that of the second to the first in relative terms. 
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Difficulty in generating and coordinating such conceptual operations would explain the 
way Kit expressed herself in Excerpt 3. 

Excerpt 4 (below) continued the discussion around the question of what it means to 
think that the event in question is unusual. It highlights Luke’s thinking with regard to 
similar issues experienced by Kit, and it illustrates the instructor’s effort to scaffold the 
development of that thinking towards an operational image involving the composition 
and coordination of the requisite images discussed above. 

 
Excerpt 4 (Lesson 6) 

425. Instr: All right, go ahead, Luke. 
426. Luke: In a collection of nights it would be unusual if a majority or uhh, it  

didn’t, it would be unusual if most of the time he’d see, or 2 in (inaudible) 
427. Instr: Ok, so you, there you’re thinking suppose that we’ve got, we’re looking back at 

the past month. 
428. Luke: Right. 
429. Instr: We’re looking back at 30 nights. And so it would be unusual, and so then you 

could sort of check them off: “saw at least two people,” skip, skip, skip “saw at 
least two people” (gestures as though moving along days in a calendar and 
making a check mark), skip, skip. So out of those 30, it would be unusual for him 
to see uhh two or more people if, if what was true about those 30 nights? 

 (3-second silence) 
430. Luke: That he saw two or more people? 
431. Instr: Yeah. No, what—? 

 (Several students chuckle at the apparent confusion) 
432. Luke: I didn’t follow your question. 
433. Instr: All right. We’ve got those 30 nights. We go along and we check, we’ve got, like, 

a board that’s numbered 1 through 30 
434. Luke: A calendar! 
435. Instr: and we check those nights. Every night that he sees two or more people, he puts a 

check (motions with hand as though making a check mark). 
436. Luke: All right. 
437. Instr: All right. So what would it then mean about those 30 nights that it’s unusual for 

him to see at least 2 people? 
438. Luke: Most of the time he didn’t see two or more people. 
439. Instr: Yeah, or most of those nights aren’t checked. 

 
In Excerpt 4 Luke began his attempt (line 426) by referring to a “collection of 

nights,” suggesting that he had an image of collecting past data on which to base an 
assessment of unusualness. But Luke wasn’t quite able to coherently articulate what he 
would look for in those past nights; he appeared to confound “unusualness” with a 
tenuous description that seemed more consistent with a meaning for “usual.” The 
instructor offered support (lines 427-429) by describing a scenario in terms of a 
structuring metaphor intended to help Luke imagine what he would keep track of on 
those past nights. Luke’s response (line 430), however, suggests that he was attending 
only to the event of interest “he saw two or more people” and not coordinating it with an 
image of the frequency with which the event might occur. Eventually, in line 439, Luke 
was able to successfully coordinate all the parts; his response suggesting that he 
understood “unusual,” at least momentarily, to mean that on most of the nights Ephram 
did not see two or more acquaintances at the movie theatre. 

Luke’s thinking in Excerpt 4 illustrates the slipperiness of the emergent images and 
the precarious control that students generally had of their composition; they often 
struggled to piece together component images to create and articulate a coherent 
operationalization of the event’s unusualness as a quantity. In their attempts to imagine 
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the scenario in a manner that might support quantifying the event’s unusualness, their 
focus of attention would easily and unwittingly shift among the component images, 
thereby making it very difficult to compose them into an integrated and stable whole. 
Students were eventually able to provide more or less coherent articulations of 
unusualness in quantitative terms, but they did so largely under heavy scaffolding by the 
instructor as typified in Excerpt 4. 

To summarize, the discussion excerpts presented in this section illustrate the students’ 
difficulties in thinking of, and describing, an event’s unusualness in quantitative terms. 
Moreover, they indicate that students were not easily oriented toward construing each of 
the activity situations (e.g., the birthday problem and the movie theatre scenario) in a 
manner amenable to quantifying an event’s unusualness. I hypothesize that a key factor 
implicated in this difficulty was a lack of explicit cues in the problem situations that 
might have evoked students’ prior knowledge of repeated sampling as a basis for 
quantifying an event’s likelihood, and its potential unusualness. In retrospect, the 
discussions around the simulation design activities thus serve as an indicator of the limits 
of the students’ prior knowledge; they suggest that a good number of the students had not 
reflectively abstracted (Piaget, 2001; von Glasersfeld, 1995) the essence of their method 
of repeated sampling employed in the preceding phase of the experiment to 
operationalize and generalize unusualness as a statistical quantity. This claim is further 
supported by students’ written responses to a post-experiment test question administered 
at the end of this phase of the teaching experiment, after eight days of instruction aimed 
specifically at fostering their ability to conceive a sampling outcome’s potential 
unusualness as a statistical quantity and to describe such in operational terms. Table 1 
displays students’ written responses to the test question (Figure 4) that queried their 
thinking with respect to this goal. 

 
Table 1. Student responses to the post-test question  

 
Student Response * 
Nicole 
 

An unusual event would be one the most unlikely to occur. (I.E.- In 3-card poker it is 
unusual to get a 3 of a kind.) It’s that something that occurs that wasn’t predicted. 

Sue That mean there is a only few percentage of event occur during the longrun 
collection of samples. 

Kit When something happens a small % of the time. 
Sarah 
 

Of all the samples taken, or items tried, the usual occurance happens the least or 
close to the least. 

Peter 
 

That an event is not likely to happen. If 1000 samples are taken and unusual event 
will happen about 5% or less of the time. 

Tina 
 

It means that., How unusual is it for this to occur? That it does not occur/show up as 
often. 

David 
 

The event unusual means in statistics that there is a lower percentage [“chance”] that 
something unusual will occur. Like something unusual will probably only occur 10% 
of the time. 

Luke In statistics the word usually relates to the occurance that something occurs. When 
someone says that the results are unusual, then they mean that the results don’t come 
out like this on a common occurance.  

* All responses are presented verbatim and have not been edited for grammar or punctuation. 
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What does it mean, in statistics, that an event is “unusual”? (We know that unlikely, 
unexpected, and rare are synonyms of unusual, so mentioning them will not answer 
the question. Please explain the meaning, don’t just give synonyms.) 
 

Figure 4. A post-experiment test question posed to students 
 
These responses were analyzed for whether they explicitly mentioned and 

coordinated two key ideas previously discussed as necessary for quantifying unusualness: 
1) an idea of collecting multiple samples or repeating a process multiple times, and 2) an 
idea of infrequency (or low relative frequency). Three of the responses—Sue’s, Sarah’s, 
and Peter’s—entailed both ideas, thus suggesting those students’ emergent abilities to 
quantify unusualness, and their having understandings consistent with that targeted in 
instruction. Kit’s, Tina’s, and David’s responses referred explicitly to the second idea, but 
only implicitly to the first. These three responses were coded as ambiguous because I 
could not ascertain how elaborate their images of “percent of the time” or “does not occur 
as often” were. Finally, Nicole’s and Luke’s responses contained far less evidence of an 
ability to operationalize “unusualness,” and were thus coded as inconsistent with the 
targeted understandings. More specifically, Nicole’s response amounted, in places, to a 
rephrasing using synonyms for “unusual,” whereas Luke’s response was circular in its 
use of the term. Although both referred to the idea of an event or occurrence being 
uncommon or not predicted, they did so in a manner that is non-quantitative according to 
the criteria above. 

 
5.2.  THEME 2: CONSTRUING SITUATIONS AS STOCHASTIC EXPERIMENTS 

 
The discussions around the movie theatre scenario (see Figure 2) brought to light 

other difficulties that students experienced in re-conceiving a given situation as an 
idealized stochastic experiment. These difficulties can be broadly interpreted as problems 
of constructing a mathematical model (Doerr & Pratt, 2008). The tasks necessitated 
construing and re-describing the given situations in terms of idealized assumptions, 
involving the identification of a suitable population, a sample, and a random sampling 
process. The activity scenarios did not describe such aspects and relations per se. Instead, 
students had to learn to construe scenarios in those terms—a process that entailed re-
configuring and creatively interpreting the given information. This turned out to be a 
significant challenge for most students. As illustrated in the following data excerpts, their 
progress was tentative and tightly embedded within their interactions with the instructor 
in the classroom discussions.  

 
Constructing assumptions The following illustrative sequence of data excerpts is 

from the classroom discussions about explicating the assumptions for simulating the 
movie theatre scenario. Excerpt 5 illustrates that David was overwhelmed by the 
possibilities for assumptions. 

 
Excerpt 5 (Lesson 6) 

428. David: I didn’t get this question ‘cause it, there are so many different things that could 
happen. Like, what if only half the town goes to see movies? Or uhh what if it’s 
the same 2 people every night, that he sees? It says he knows 300, but couldn’t, 
like, the same 2 people go see the movie every night? 

429. Nicole: Yeah. 
430. Instr: Sure, that’s right. So that’s where you lay— 
431. Peter: Good thinking! 
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432. Instr: you settle all of this in your assumptions. Like, one of the assumptions that you 
have to make in order to look at this in the abstract, without actually knowing 
him and the town, is that it’s a random process by which the veranda, uhh 
theatre gets filled every week. (3-second pause) Now, it may not in fact be! But 
in, that’s an assumption that you could make that will let you proceed. 

433. David: Oh, ok. 
434. Sarah: You also have to assume that he sees everyone that goes to the movie. 
435. Instr: Very good! Because if he only sees a small fraction of the people going  

in, people could be there and he might not see them. (3-second pause)  
All right. So we’re not saying he does, but we’re saying in order to  
proceed we’ll make this assumption. Ok, all right. Does that make  
sense, David? 

436. David: Yeah. 
 
Excerpt 5 indicates that David was unable to decide what to assume because he felt 

lost in a myriad of possible choices. David seemed to view an assumption as a hard fact 
about the situation, rather than as a working supposition upon which to proceed further. 
Thus, David’s difficulty appeared to be in looking beyond the information given in the 
situation and reconfiguring it in terms of aspects that are not explicitly given per se, but 
which are nonetheless necessary to presume. The need to reason hypothetically about a 
situation as a starting point for designing an investigation of an issue, together with the 
absence of clear constraints on what could be hypothesized, made the tasks seem too 
open-ended and ambiguous to some students. The classroom discussions were intended to 
help students learn to deal with such ambiguity by providing them with opportunities to 
unpack their implicit assumptions and create new assumptions.  

Students’ difficulties in deciding what to assume about the given situations were 
ongoing in these discussions. Decisions were rarely made in a clear-cut manner. Instead 
they often emerged out of relatively arduous negotiations embedded within messy 
interactions. The subsequent excerpts illustrate this. Excerpt 6 begins with David 
struggling to make sense of the underlined part of the central question that was posed as 
part of the movie theater scenario: “Is it in fact unusual that at least two people Ephram 
knows attend the movie he shows, or could people be coming because he is there?” 

 
Excerpt 6 (Lesson 6) 

482. David: Why did you throw in that last part that says “or could people be coming 
because he is there?” Why did you put that part? That was, that wigged me out, 
I didn’t know what to do. It’s, like, what is that? 

483. Instr: Oh! Well— 
484. David: It says (reads) “or could people be coming just because he is there?” 
485. Nicole: Yeah! That’s my point! 
486. Instr: Or for some other reason or another— 
487. David: Yeah. I was, like, what is that? 
488. Instr: Well, if he always saw— 
489. Peter: We have to assume that they’re not? 
490. Instr: if he always saw 30 people that he knows—a tenth of the people that he knows 

in this town are there every night, then something’s going on, right? (2-second 
pause).  

 […] 
491. David: Yeah, maybe he’s sneaking them in for free. 
492. Instr: Perhaps. Something’s going on. Would you expect him to see very many people 

that he knows? If he knows, if there are 30,000 people and it’s a random draw to 
fill the theatre, would you expect him to see very many people that he knows? 

493. Nicole: Well, how many movies are there a night? 
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494. David: He only knows, like, 1% of the town, so it’s kind of weird that he’d see people, 
2 people every single night. 

495. Luke: Yeah. 
496. Instr: Yeah, he knows 1% of the town.  
497. Instr: Well, we’re going to simulate it, we don’t know the answer to the question yet! 
498. Kit: I think there’s one movie per night. 
499. Instr: It might be rare. 

 
The question that David and others found so problematic in Excerpt 6 was intended to 

provoke reflection on the reasonableness of the random attendance assumption, in case 
the event in question turned out to be statistically unusual. However, this appeared to 
David and Nicole (lines 482-487) as an isolated question that made little sense and which 
they could not relate to the greater task. In retrospect, their difficulty is not surprising; 
since the class had not yet empirically investigated whether the event in question might 
be unusual, these students could not see the relevance of this statement. The tension that 
these students experienced drove the instructor to start bringing issues of the underlying 
assumptions out into the discussion. 

 
Conceiving a population and a sample In the ensuing interaction in Excerpt 6 (line 

494), David expressed his gut feeling that the event of seeing two or more acquaintances 
at the movie theater each night is surprising given the assumption that Ephram knows 
only 1% of the 30,000 people in the town. Thus, David’s intuition touched on the idea of 
drawing a non-representative sample from the underlying population. Moreover, David’s 
intuition also suggests that he was mindful of the 300 acquaintances as a proportion of the 
entire population, but that he did not reason similarly about a sample to think of the 
number of acquaintances as a proportion of the 250 people selected. Had he done so and 
noted that two or three people out of 250 is close to 1%, he might have been less 
surprised by such a result. Nicole (in line 493) also began wondering what to assume 
about the number of movies shown each night, suggesting her effort to conceive the 
scenario in terms of an unambiguous sampling experiment (perhaps one in which the act 
of looking into a theater containing 250 people once per night is as if one were recording 
the composition of a 250-person random sample collected from the town’s population). 

In Excerpt 7 the instructor moved to engage students in choosing values for the Prob 
Sim parameters in order to simulate the movie theatre scenario. The discussion thus 
turned to making explicit connections between the scenario and an idealized sampling 
experiment, guided by the structure of the software interface.  

 
Excerpt 7 (Lesson 6) 

504. Instr: Now, I’m going to, I’m gonna do this in a way that uhh the guy who wrote this 
program suggested (sets up Prob Sim to simulate movie theatre scenario). Put a 
little tiny dot to represent a person in the town who he doesn’t know, and a big 
dot to represent a person in the town that he does know. How many of these 
dots are there gonna be in this mixer? (points to small dot in left-most element 
label on the screen displayed in Figure 5) 

505. Luke: 30,000 
506. Instr: No 
507. Other 

students  
27,000 

508. Instr: Yeah, 27,000. No, 29,700 
509. Peter: 29,700 
510. Instr: (enters 29,700 into the “how many” slot under the first element label in Prob 

Sim; see Figure 5) 
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511. Peter: Mathematical geniuses! (laughter in background) 
512. Instr: So how many people does—uhh that’s because he knows 300 of those 30,000. 

Right? 
513. Luke: He knows (inaudible) thousand. 

 

 
 
Figure 5. Prob Sim parameter settings for simulating the movie theatre scenario. 
 

 […] 
514. Instr: Ok, we’re gonna take 250 of those people. Right? (assigns this value as sample 

size in window on screen) Are we taking them with or without replacement? 
515. Lesley: Without. 
516. Peter: With, with!  
517. Luke: No, without replacement. 
518. Lesley: With! 
519. Nicole: No, you can’t, it 
520. Luke: You can’t— 
521. Nicole: If it’s people it has to be—without 
522. Peter: Because they can come back the next night. 
523. Instr: No, no, we’re talking about one night. 
524. Kit: Yeah, but not on the same night. 
525. Peter: Oh! 
526. Luke: Repetitions is (inaudible). 
527. Instr: One night. So, is it with replacement or without replacement? (points cursor at 

“replacement” option in Prob Sim window on screen; see Figure 5) 
528. Nicole: With. 
529. Lesley: With. 
530. Luke: Without replacement. 
531. Kit: Without. 
532. Instr: If a—can a person be in a theatre twice? 
533. Kit: No. 
534. Luke: No. 
535. Lesley: No. 
536. Instr: Ok, so it’s without replacement. 
537. Peter: They snuck back in and watched it again. 
538. Nicole: Wait. 
539. Kit: Not at the same time you can’t. 
540. David: You got it on without replacement. 
541. Nicole: It’s one movie one night. 
542. Instr: Yeah. 
543. Lesley: I don’t understand. 
544. Instr: Or, it’s just one night. We don’t know how many movies, but— 
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545. Nicole: Well then it’s a difference! That’s what I asked you 
546. Instr: Ok, then let’s say one movie one night. That’s a good assumption.  

 
Excerpt 7 began with the instructor using a small dot and a large dot in the software’s 

element labels to represent the population items non-acquaintance and acquaintance, 
respectively (see Figure 5). Luke then proposed that the Mixer—Prob Sim’s 
representation of a population—should contain 30,000 small dots (line 505), suggesting 
that he had not yet conceived of the population as comprised of those two distinct classes 
of items. The instructor and other students chimed in with a different answer (lines 506-
509), and after a mental computation error was resolved, the instructor explained his 
choice of the number of small dots in terms of an appropriate population proportion. 

The discussion then turned to assigning the sampling parameters. The instructor 
proposed that sample size should be 250 (line 512), and the issue then became whether to 
sample with or without replacement. Here, direct evidence of students’ thinking about the 
issue is limited. However, students clearly had different different opinions about this, and 
I hypothesize that the source of those differences was rooted in their different (implicit) 
assumptions about how many movies are shown each night. Peter’s utterances in lines 
522 and 537, together with the surrounding student contributions, provide insights into 
his thinking. In line 522, Peter appeared to assume that people could return to the movie 
theater on different nights, suggesting that he had not yet structured the situation in terms 
of what might occur on an individual night as a distinct unit. Instead, he seemed to be 
considering events that could occur across several nights. Peter’s utterance in line 537 
indicates that even when restricting himself to considering an individual night, he was 
thinking of contingencies that suggest he was unclear as to what constituted a sample in 
the scenario. Peter’s difficulty can be interpreted as one of making an idealized 
assumption about the situation. His comments presumably reflect the challenge he 
experienced in construing the situation as an unambiguous sampling experiment in which 
a sample consisted of a 250-person audience that attended a single movie on one night. 

Although the best available evidence is of Peter’s thinking, Excerpt 7 illustrates that 
the group was generally indecisive about whether to sample with or without replacement. 
Students who flitted from one sampling option to the other (i.e., Lesley and Nicole) were 
evidently unsettled about what to take as a sample in the scenario; their assumptions were 
still formative and highly unstable. Eventually, the instructor and Nicole settled on the 
assumption that a sample should correspond to a single movie on a single night (lines 
541-546)—a simplification consistent with sampling without replacement. 

 
To summarize, the data excerpts discussed in this section provide important glimpses 

into how construing a contextual situation as a stochastic experiment can be a highly non-
trivial activity for students. Even under conditions of heavy instructional guidance, 
involving a supportive classroom environment in which it was normative to dissect ideas, 
and the use of software intended to structure and constrain the activity in productive 
ways, students experienced considerable difficulties. Salient among these was difficulty 
in making discriminating assumptions about the situations to be modeled. The 
connections between a given situation as it is described and its construal as a stochastic 
experiment were generally not transparent for students.  

 
6. DISCUSSION AND CONCLUSION 

 
The findings of this study center around two themes that speak to the challenges of i) 

conceiving of expectation as a statistical quantity, and ii) conceiving of situations as 
stochastic experiments. Regarding the first theme, on a broad level the findings 
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underscore simply how difficult it can be for students to move from having an intuitive 
sense of an event’s expectation to quantifying that sense. On a deeper level, interpreting 
students’ difficulties through the frame of quantitative reasoning (Thompson, 1994) 
reveals some of the finer intricacies of those difficulties that move us toward a level of 
explanation for them. At the core of students’ difficulties in quantifying an event’s 
likelihood lay persistent and robust challenges in conceiving of the underlying situations 
in a manner that would support their thinking of the expectation of an event embedded 
within them as quantifiable. More specifically, the key conceptual operations ostensibly 
entailed in doing so that posed significant challenges for students are: imagining a given 
situation in terms of an idealized sampling experiment that could be repeated under the 
same conditions; generating an image of the anticipated accumulation of those 
repetitions, and generating an image of the anticipated accumulation of the number of 
times an event of interest is observed; and composing these images so as to quantify 
expectation of the event of interest as its anticipated relative frequency. With regard to 
the last three operations, the difficulties exhibited by students Kit and Luke (highlighted 
in data Excerpts 3 and 4) provide a paradigmatic illustration of how students’ efforts to 
generate and compose such images were fraught with an instability, wherein their 
emergent images tended to unwittingly “dissolve” into one another. Additionally, as 
indicated by the results of the post-test question that queried students’ abilities to 
operationalize “unusual event” (see Table 1), a majority of the students continued to 
struggle to develop these operations even after having participated in eight instructional 
sessions dedicated to fostering such development. The lack of control that students 
exhibited in generating and coordinating the requisite images is indicative of their 
difficulties in conceiving the repeatable sampling process and the event of interest as 
identifiable and distinct conceptual entities. The absence of a clear mental image of the 
two entities would consequently make it difficult to imagine their co-accumulation and 
the event’s expected relative frequency.  

The first of the above-mentioned conceptual operations (imagining a given situation 
in terms of an idealized and repeatable stochastic experiment) relates directly to the 
second theme of the study’s findings. The difficulties documented here indicate that it 
was not straightforward for students to construe a contextual situation in terms of a 
population or a sample drawn from it, in a manner that could enable them to reconceive 
the situation as a repeatable sampling experiment. At the core of students’ difficulties 
were ambiguities regarding what to conceive as the “repeatable entity,” seemingly driven 
in part by their uncertainties concerning what idealized assumptions to make about the 
underlying situation and how to map such assumptions to methods of sampling (with or 
without replacement). As illustrated in the discussion excerpts, collectively students 
moved toward eventually constructing such assumptions and mappings through an 
arduous process of negotiation and only under tight scaffolding by the instructor. 

The conceptual operations discussed above can be seen, more broadly, as key 
entailments of conceptualizing a trial of an experiment—“an instantiation of an 
experiment that yields a public outcome” (Horvath & Lehrer, 1998, p. 122) so that two 
instantiations of it may be compared, assuming they are essentially identical with respect 
to some key structures. The issue of what constitutes a trial of an experiment for learners 
was not an explicit problématique of the studies discussed at the beginning of this report. 
Instead, the idea of a trial of appears to have been taken as a given in most of those 
studies, as reflected by their use of particular tasks and computer environments that were 
evidently not intended to have students confront and problematize the idea. The evidence 
presented and discussed in this study, however, arguably provides good reason not to take 
the idea of a trial as a given in stochastics education, but rather as one that learners must 
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construct and whose construction can entail considerable conceptual machinery and 
instructional challenges. With regard to this last point, the findings of this study point to a 
need for research that focuses on an aspect not directly under its purview, but 
nevertheless informed by its findings—namely, instructional design that takes the 
development of a stochastic conception of sampling as an important problem to address. 
The importance of such research is further underscored by the increasing prevalence of 
new statistics curricula in which the use of stochastic simulations is prominent (Garfield 
et al., 2012; Rossman & Chance, 2012). 
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