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DISCUSSION OF “PROBABILITY MODELING AND 
THINKING: WHAT CAN WE LEARN FROM PRACTICE?” 

BY PFANNKUCH ET AL.1 
 

1. BETH CHANCE AND SOMA ROY, CALIFORNIA POLYTECHNIC STATE 
UNIVERSITY-SAN LUIS OBISPO, USA 

 
We thank the authors for their painstaking work extracting and analyzing the 

probabilistic thinking of these practitioners and experts. Although we agree with the 
limitations of this sample and the need for replication of such investigation in other 
settings, we did find several of the comments to be very much in accord with our own 
observations in teaching introductory statistics at the university level and in developing 
new curricula focused on using simulation-based approaches to learning the reasoning of 
statistical inference. 

As we have switched our introductory statistics course to one centered on using 
simulation to model the randomness inherent in random sampling and random assignment 
to build student intuition of p-values, we have found one of the main weaknesses of our 
tertiary students is concrete understanding of modeling. Many of our students enter the 
course without the ability to differentiate between models and data, simulation vs. reality. 
Some of this appears to stem from a lack of appreciation of the utility of models, lack of 
deep understanding of the role of randomness, and the expected difficulties in abstraction. 
We hope this paper brings to the forefront the very large need to better develop students’ 
intuition of models from very young ages. 

This lack of understanding of modeling also impacts students’ abilities to understand 
the role of simulation. This manifests itself in students’ struggles with understanding the 
assumptions underlying the simulation, and how to use these simulated results to answer 
statistical questions. It can take some students a while to understand the goal of 
comparing the one set of observed results to what “could have happened” according to a 
specific simulation model. Too often our students cannot distinguish among simulation 
strategies, often equating “anything done on the computer” with a “simulation”, or 
believing “repeated sampling” corresponds to repeating the study again.  Students need 
more practice, as advocated for example by the CATALST curriculum 
(<http://www.tc.umn.edu/~catalst/>, see also Garfield, delMas, and Zieffler, 2012) and 
now feasible with tools such as TinkerPlots (Konold & Miller, 2011) with building 
probability models themselves, in thinking deeply about the assumptions behind those 
models, and seeing the consequences when the assumptions are incorrect. How often in 
primary and secondary instruction are students asked to question, critique, and test 
models (in general and in the context of probability models), or to see the faulty 
inferences when inappropriate models are applied? At what ages should we be expecting 
this of our novice learners? What are the essential skills and understanding for students to 
effectively perform a “sniff test”?  

Some additional questions our curriculum work has raised for us include: When and 
how do we get students to build statistical models at very early stages of learning? In our 
college-level classes we introduce chance models via coin tossing. Is this model 
accessible enough to expect even younger students to develop for themselves? It appears 
we can utilize this model for quite a while without necessitating in-depth study of the 
binomial distribution, though we still want students to understand the assumptions (e.g., 
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independence) behind the model. How do we then best transition to more complicated 
models? How much of this initial learning should utilize tactile simulations vs. computer 
micro-worlds vs. black boxes? How critical are the visual components of some simulation 
tools in helping students develop the ability to “see structure”? Is asking students to write 
“pseudo-code” explaining the steps of the simulation worthwhile? Sufficient? It would be 
interesting to learn more from these practitioners how they were able to develop those 
skills. 

A second message that struck us was the need to integrate probabilistic and statistical 
thinking. Students need to understand the contrast between inductive and deductive 
reasoning and what each brings to bear, but too often there still seems to be a push to 
separate probability instruction from statistics instruction, rather than integrating the two 
together. We believe that integrating probability concepts into statistics curricula ensures 
that students understand and appreciate how probabilistic thinking informs statistical 
thinking. Thus, rather than a “probability theory first” paradigm or a “statistics without 
probability” response, we advocate teaching the probability tools as they are needed to 
answer interesting statistical questions (e.g., Chance & Rossman, 2015). We heartily 
agree with the authors’ call for using applications to help develop probabilistic thinking, 
at all levels, with a focus on making better decisions. Similarly, research in how 
probabilistic and statistical thinking are developed should also be integrated and mutually 
informing. Lessons can also be learned from instructional tools being used to help 
students understand concepts of systems and random processes as in engineering 
education.  

Another area in which we would like to see expansion of such investigations is a 
focus on the natural intuition of young children and how instruction in chance and models 
can build on what they bring to the classroom and how improved reasoning can be 
naturally developed towards the goals advanced in this paper. Although the practitioners’ 
thinking provides an ideal model, we also need to consider what the non-expert needs to 
know to be able to make reasonable decisions in the presence of uncertainty.  In our 
classroom experiences, we have used “loaded dice” (only sums of 7 and 11 can be rolled, 
though this is not immediately obvious to the students) to help students realize they often 
do reason inductively, but we have found it difficult to help them transition to wanting to 
know what chance “looks like” in other situations. For example, whereas students seem 
to understand how coin tossing can help them evaluate whether 7 out of 8 heads is an 
unusual outcome, many students struggle with making the transition from a simple 50-50 
chance model to one where “success” and “failure” are not equally likely. How can we 
help shape such students’ intuition on what to model and how such a model is helpful to 
them? Although we agree that we should model expert thinking when we teach 
probabilistic thinking, we also want to be careful about what intuition students are 
bringing to the classroom. We agree that the theoretical mathematical model can 
reinforce empirical observation, but we hope for more investigation on when transitions 
to mathematical models (symbols and equations) can or should take place. And can we 
develop students’ ability to reason probabilistically, even if they are not yet ready for the 
mathematical theoretical complement?  

Finally, we very much appreciate the concrete examples provided in this paper of 
how probability modeling is used by practitioners. We hope additional examples can be 
made available, especially for instructors seeking to explain and motivate the use of such 
models. The next question for us as statistics educators is how can we implement what 
we have learned from these practitioners to guide our students’ understanding of 
probability modeling? How can we best build student intuition at the beginning of 
learning, rather than waiting for students to base their intuition on years of prior 
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experience? Whereas we have found the use of case studies very effective, they can also 
be time consuming and ultimately limiting in enabling students to generalize. How else 
can we help students (from varying disciplines) see the role of context in their decision 
making without getting bogged down in it?  

We expect this paper to lead to many fruitful conversations and areas of research and 
we appreciate the authors’ description of a framework on which to build such 
investigations. Our hope is that the pervasive theme of chance models will soon reach the 
pinnacle of importance in statistics education along with variation.. 
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2. DOUG SHAW, STATISTICIAN, RETIRED, AUSTRALIA 
 
I appreciate the opportunity to read and comment on this paper. The authors are to be 

congratulated on the excellent job they have done in synthesising the material obtained 
through their interviews. 

My experience in a working life as an applied statistician has been in consulting and 
collaboration. My perspective is therefore that of a practitioner, not that of a theoretician 
or of an educator. 

The reality for a practitioner is that, almost invariably, one is applying known models 
and known methodologies to obtain the required results. Reporting deadlines and project 
budgets generally preclude the luxury of developing new models or new methodologies. 
The important skills set that the practitioner in this situation brings to the table are: 
1. Familiarity with a wide range of models and methodologies, and an understanding of 

the problem and context that enables selection of a model/methodology likely to be 
appropriate for that problem. 

2. A thorough understanding of the assumptions underpinning the selected 
model/methodology. This understanding includes not only knowing the assumptions 
that support the theory, but also knowing which assumptions are critical, and how to 
verify that these critical assumptions are met. 
As a simple example of criticality of assumptions, we are all familiar with the 

assumption that “the data are normally and independently distributed.” A great deal of 
research and experience has shown that, in many areas of application, the data can deviate 
quite markedly from normality without materially affecting the outcome. Deviation from 
independence is, on the other hand, quite a serious matter.  

The interviewees, via the authors, have emphasised the importance of the skills in 1. 
above, but perhaps have not given sufficient prominence to those in the second point. The 
accumulation of this knowledge about underpinning assumptions, their criticality, and 
their verification is vital if one is to become an effective practitioner.  

“… accumulation of this knowledge…” turns attention to the educational and 
developmental aspects of the paper. The interviewees are uniformly adamant about the 
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necessity for exposure to many and varied problem contexts, so that the abilities to “see 
structure” and “apply structure” can be developed. Students should be exposed to many 
problem contexts, so that can learn to identify common underlying structures and apply 
models appropriate to those structures. (This dictum applies to statistical modelling with 
as much force as it does to probability modelling.) But how do we achieve this within a 
university program? There would seem to be major difficulties. 

The first difficulty is simply the time available. Given that the student has other 
requirements to meet (and there was consensus that theoretical aspects were important), 
there would be limited time available for the proper presentation of problems in context, 
for the student to work on the problems, and for the outcome of the work to be discussed 
and assessed. 

A second difficulty concerns the availability of people capable of leading and guiding 
the students during their exposure to many and varied problem contexts. Just giving the 
students sufficient detail about the problem context, and doing it in a convincing manner, 
requires that the lecturers/leaders have themselves had exposure to many and varied 
contexts. It is unlikely that there will be sufficient lecturers/leaders with that sort of 
background.  

The interviewees generally concurred that something like “intuition” was an essential 
component of being a successful probability modeller. All of the interviewees appear to 
be successful probability modellers (in that they identify themselves as probability 
modellers), so it is difficult to infer for a wider group that this “intuition” was critical for 
success. If it is critical, how is it to be fostered and developed?  

The authors perhaps missed an opportunity to elicit information from the interviewees 
about their path to their current status as a probability modeller. We have Rose’s 
comments that she did not feel she was a statistician when she completed her PhD, but 
now, 15 years on, she feels she is one. When did she first feel that she was a statistician, 
and what made her realise this? If this information was available for all the interviewees, 
we could obtain some feeling for the dimensions of the task of educating successful 
probability modellers. 

Again, I thank the authors for their careful and detailed work, and the editorial group 
for the opportunity to comment.  

 
3. LISBETH KAISERLIAN CORDANI, INSTITUTO DE MATEMÁTICA E 

ESTATÍSTICA, UNIVERSIDADE DE SAÕ PAULO (IMEUSP), RETIRED, 
BRAZIL 

 
It is interesting reading an article with a qualitative approach, a harvest with which 

I'm not very familiar. But I am aware that many high-level qualitative research articles 
are being produced, as is the case of this article of Pfannkuch et al. To investigate the 
mindset of researchers with great expertise and to try to address student learning through 
these cognitive strategies is a very interesting approach, but there is one crucial point to 
remember—the necessary training of new university students—for this strategy to be 
used. I will return to this point later. 

We can go to a dictionary to see the entry for ‘probability,’ which will give 
information to ordinary citizens, describing various notions—frequentist, classical, 
Bayesian, axiomatic. We can also think of probability in an informal way, which derives 
from the way that ordinary people see the world, connected, for example, to the ideas 
developed in the text of Kahneman, Slovic, and Tversky (1982), which presents heuristics 
and biases linked to probabilistic reasoning. Often our choices are intuitive and we do not 
always make decisions with less risk even if we are risk averse. More formal definitions 
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are found in texts of probability, with varying degrees of sophistication depending on the 
audience to whom the book is intended. 

Linking the two ways of seeing probability, we can mention Lindley’s (1985) 
statement: “Probability has no existence outside the individual, as the length of a table. 
Probability expresses the relationship between an individual and the world in which it is 
contemplated.” 

Therefore, there is no reason not to expose students to the probabilistic reasoning 
from the beginning of schooling, as well to the statistics, given the close link between 
these areas that help the advancement of science in the various fields of knowledge. 
However in many countries this is not done. 

The paper of Pfannkuch et al. quotes Biehler (1994), who discusses the tension 
between probability and statistics, commenting that this is not new. It is as if there were 
two different cultures. It is possible to rescue two philosophical currents of the 
seventeenth century that could be considered as precursors of this tension: the 
Rationalism of Descartes and the Empiricism of Bacon. For the former, roughly speaking, 
knowledge—ability that man has within himself—is created from reason. According to 
Descartes, from basic assumptions about the very genesis of the phenomenon the scientist 
must first deduce the model and then test it experimentally. Bacon, probably inspired by 
Aristotle (“Nothing is in the intellect that has not passed through the senses”), adopts the 
principle that all knowledge is derived from an empirical basis and defends the 
experimental method, without a priori theory. He states that truth would appear from the 
simple juxtaposition of data, collected carefully. These two approaches logically alternate 
in the production of knowledge. Probability and statistics are an intrinsic part of the 
process, the former involved in the rationalist method and the latter in the empiricist 
method. In a way, this is linked to the quotation of Doerr and Pratt (2008) that Pfannkuch 
et al. present. 

In the article, respondents who are experts in their domain areas, and who have strong 
interest in the subject in which they work, alternate between the two approaches 
described above. They are interested in optimizing their decisions to take advantage 
either of an economic or an academic activity. The paper contains examples of both 
abstract research par excellence, for which the world of coins and data has an interest 
itself, and also more practical or theoretical research, each with its own approach, 
strategies, and mental models. In summary all kinds of research.  

But returning to the case of the student’s education: how does this approach facilitate 
probability and statistics learning? In particular, what type of new university students 
would find this approach adequate? As we see in the article, the authors are from New 
Zealand, a developed country, whose national curriculum can be found at 
http://nzcurriculum.tki.org.nz/The-New-Zealand-Curriculum.  

A quick analysis of this curriculum, with eight levels for the 13 years of schooling, 
reveals consistent reference to Mathematics and Statistics. This already shows an 
intention to include probability and statistics in elementary school, which is not always 
found in basic school curricula. At all levels, the goal is to make students think 
mathematically and statistically. Statistical Investigation, Statistical Literacy, and 
Probability are presented at all eight levels, producing a knowledge platform for the area 
that enables the use of progressively more complex components in order to develop a 
student with a specialized background in this type of reasoning.  

By Level 8 (the last years of school) we see applied situations involving Binomial, 
Poisson, and Normal distributions. Here we understand that the design of Pfannkuch and 
colleagues’ article presupposes a beginning university student with this background, 
which makes sense of their discussion. Why? Because the student has experienced 
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investigative questions, data collection procedures, and simulations that indicated paths to 
modeling. So the understanding that probability and statistics are important for the 
advancement of knowledge is presented from the beginning, and familiar structures and 
more complex models can be developed. This is an ideal situation for the article; many 
students will engage in this endeavor with dedication, even if there may be some who 
lack motivation to investigate problems that are not their own or to develop strategies that 
will not bring them professional reward. Students will have the mental preparation for 
this, if they want to develop the theme. 

Thinking of another reality, for example the Brazilian reality, it would be impossible 
to address the issue with this level of depth in probability and statistics with regular 
university students, because they do not have this level of background. An initial analysis 
of texts that Brazilian students utilize during pre-university education shows the 
following problems: an approach to probability that is only manipulative, without 
creativity; statistics and probability with no link between them; probability with no link 
with decision-making; work with statistics presented in an instrumental way with little or 
no discussion about variability, just calculation.  

Countries such as Brazil are too far from the reality envisaged in this paper, but of 
course there are others in which these ideas can be used. There is a global movement for 
curriculum change (even in Brazil), which could facilitate the use of this approach in the 
medium term.  

I congratulate the authors for the careful presentation of various models of reasoning, 
hoping that it will be a stimulus for the development of the area of probability and 
statistics in pre-university schooling in other countries. This could give students around 
the world the possibility of becoming high-level scientists, with knowledge to improve 
the quality of life on the planet, as well as the opportunity to choose, if they want, the 
sexiest job of the 21st. century: The data scientist (as Davenport and Patil, 2012, have 
called it). 
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4. RESPONSE OF AUTHORS TO DISCUSSANTS’ COMMENTS  
 
The authors thank the discussants for their interesting and thoughtful observations on 

the findings from our paper and the challenging questions they raise about probability 
education. 
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Our goal for this paper was to build a deeper conceptual framework that would be 
useful for researchers and curriculum developers: a framework encoding desired 
destinations in preparation for formulating action plans for reaching them. Although 
specific teaching and learning strategies and curricula will be a vital future step, our hope 
for this paper was that it might play a similar role to Wild and Pfannkuch’s (1999) 
framework for statistical thinking by stimulating overarching ideas about future pathways 
for probability education.  

We were also thinking in terms of moving beyond the second-class-citizen 
conception of “probability as the servant of the statistics we teach.” In the early years of 
statistics education, the required probability-model components are too simple to give 
any glimpse of the power of probability for constructing models of interesting and 
complex systems. We aim for teaching to facilitate a sense of what probability modeling 
can do to help us explore how systems work, both for broad audiences and—looking 
forward—toward developing specializations in probability-modeling to complement 
statistics specializations. Some parallel development may be desirable, rather than a 
choice between “probability then statistics” and “probability integrated with statistics.” 

Complex probability models can be formed by putting together simple building 
blocks like coins, dice, balls in urns, and spinners in useful ways. All of them provide 
model-element analogs for a vast array of important applications. There has been 
emphasis on mathematics about these elements, but they have seen very little use in 
activities that focus on model construction. The advent of technology such as TinkerPlots 
(Konold & Miller, 2011) now makes the power and purpose of models accessible even to 
middle school students, enabling them to construct models in relatable authentic-type 
contexts. The potential for building models to help us think about the behavior of 
complex systems using such simple building blocks is not something many people would 
ever come up with on their own. 

Indeed, Chance and Roy highlight that the concept of chance models needs to gain 
paramount importance in probability and statistics education on a par with that of 
variation  in statistics education (e.g., Franklin et al., 2007). With the proliferation of data 
analysis in curricula, chance models are the Cinderella whose time has come to flourish 
in its own right and also to become integrated with statistics learning. However, as 
Chance and Roy point out, there are many important research questions to be explored: 
about how to build students’ intuition to see structure, about how to grow students’ 
understanding of the purpose of and concepts underpinning probability modeling, and 
about what learning experiences and resources students need to have in order to construct 
models. We compliment Chance and Roy on the breadth of their questions and believe 
they provide a very good starting point for developing a research agenda in this area.  

We agree with Shaw that model assumptions are critical, as we point out in Figure 4, 
and are an important aspect of learning about probability modeling. Shaw also states that 
exposing students to many varied contexts may be problematic in terms of time available 
and teacher expertise. At the tertiary level it may be viewed as problematic, but that 
should not stop tertiary course programs from rising to the challenge of creating ways of 
developing students’ probability-modeling capacities. Schools can play a role in 
preparing students to think in probabilistic ways, as Cordani explains in her example of 
the New Zealand mathematics and statistics curriculum. Indeed work by Lehrer 
(http://modelingdata.org) in middle schools using chance models and variation in an 
integrated way to deliver both science and mathematics curricula gives a potential 
blueprint for how school curricula can change towards including a probability modeling 
approach. Depending on a country’s current curricula and pedagogical practice for 
statistics and probability, as Cordani points out, a change to include chance and models 

http://modelingdata.org/
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may be too far from reality. A vision and a setting of goals for the future of probability 
education as proposed in our paper is necessary, however, to stimulate debate and 
development. 

Disruptive technologies such as smartphones and the profusion of “apps” are 
currently causing profound global and societal changes. We conjecture that all countries 
may experience or be experiencing disruptive curricula and pedagogical changes within 
their education systems. We need to be prepared for these changes by having a vision for 
future possibilities in probability and statistics. With that vision we can work actively 
through research agendas (e.g., the Statistical Reasoning, Thinking, and Literacy Forums) 
and statistical associations (e.g., American Statistical Association) in order to have a 
reform consensus and the conceptual infrastructure in place to instigate and enact changes 
to curricula. 

As we prepare for a future probability modeling approach, which could potentially 
immerse student learning in simulations and empirical observations, we should not forget 
that the practitioners we interviewed were very definite that mathematics was a core 
building block (see Figure 5). Therefore mathematics theory should play an important 
complementary role in developing chance and models in learning and in curricula. 
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