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ABSTRACT 
 
In reaction to misuses and misinterpretations of p-values and confidence 

intervals, a social science journal editor banned p-values from its pages. This study 
aimed to show that education could address misuse and abuse. This study examines 
inference-related learning outcomes for social science students in an introductory 
course supplemented with randomization and simulation content. Learning gains 
were measured across a suggested taxonomy of inference learning outcomes using 
the Reasoning about P-values and Statistical Significance (RPASS-10) scale.  Three 
graphical comparisons of students’ Pretest and Posttest proportions were encoded by 
learning gain or loss, an inference learning outcome taxonomy, or if a correct 
concept or misconception was assessed. What students learned and the difficulties 
that persisted shape recommendations for teaching and future research. 
 
Keywords: Statistics education research; p-values; inference; misconceptions; 

hypothesis tests; statistical significance 
 

1. INTRODUCTION 
 
This classroom-based action research study was motivated, in part, to refute that 

inference procedures should be banned from applied social science as was suggested by 
Trafimow and Marks (2015). The myriad of misconceptions, misinterpretations and 
misuses that are associated with null hypothesis significance testing (NHST), p-values 
and statistical significance may be greatly reduced with a proper educational focus. Some 
of the criticisms are merely attempts to push a Bayesian agenda. Convoluted arguments 
against NHST have contributed to the misunderstanding of these procedures and clouded 
the real challenges that students have learning to use these procedures properly.  

The review of the literature gave rise to a working taxonomy of difficulties that 
people have had with Null Hypothesis Significance Test (NHST) procedures, p-values 
and, to a lesser degree, confidence intervals. This taxonomy of inference learning 
outcomes provided a framework for assessing learning gains. The lower-order outcomes 
require that students: (1) recognize basic concepts and (2) differentiate similar concepts. 
The higher-order outcomes require that students: (3) interpret inferential results and (4) 
evaluate validity of the procedures and the inferences drawn from the procedures.  

In this study student learning gains are measured across the taxonomy of inference 
learning outcomes. The study aims to improve inference learning outcomes in a statistical 
literacy-based social science course, merely by eliminating some probability content and 
adding randomization and simulation content. In addition, the study aims to refute the 
claim that inference procedures should be banned from applied social science journals 
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due to improper use. If introductory level social science students can achieve more than 
just statistical literacy by taking a one semester introductory course, this bodes well for 
proper use of inferential procedures among future researchers in the social sciences. 

 
2. LITERATURE REVIEW 

 
2.1.  BACKGROUND 

 
Researchers have discussed the many difficulties people have understanding 

inference, statistical significance, hypothesis testing, p-values and confidence intervals 
(Batanero, 2000; Garfield & Ahlgren, 1988; Lane-Getaz, 2007; Wainer & Robinson, 
2003; Utts, 2003). Some researchers have documented that introductory statistics students 
come to class with pre-existing misconceptions about reasoning under uncertainty that 
may present an obstacle to teaching and learning inferential topics (e.g., Konold, 1995; 
Kahneman & Tversky, 1982). During an introductory statistics course, a student may 
come to understand an isolated definition well and yet have difficulty differentiating that 
concept from another, similar concept encountered later in the course (e.g., p-values and 
significance levels). These are among the reasons that inferential procedures may be 
difficult to learn, to teach and to assess. Isolated assessment questions are not sufficient to 
assess student understanding about inference but analyzing the patterns among multiple 
items may provide a clearer picture of inference learning outcomes.  

There has been an ongoing controversy—particularly among some social scientists, 
psychologists, and education researchers—about the use of NHST procedures, ostensibly 
due to widespread misuses, misinterpretations, and misconceptions surrounding the 
procedures. Most recently, Trafimow and Marks (2015) called for a ban of NHST 
procedures from the Journal of Basic and Applied Social Psychology, joining a chorus of 
researchers in psychology, education and measurement (e.g., Carver, 1978, 1993; Cohen, 
1994; Kline, 2004; Schneider, 2013; Wainer & Robinson, 2003; Wilkinson et al., 1999). 
Trafimow and Marks suggest that the p-value is dead—or at least call for its execution—
among those who do research in applied social psychology. Twenty years ago educational 
researchers responded differently, suggesting that the problem might not be with the tests: 

The fact that many researchers ‘are’ now inappropriately using tests of statistical 
significance does not necessarily mean that researchers ‘ought’ to abandon statistical 
tests. (Thompson, 1996, p. 28) 
 

2.2.  USE OF NULL HYPOTHESIS SIGNIFICANCE TESTING 
 

Sir Ronald Fisher (1929) who popularized the use of p-values and significance testing 
by applied researchers held that statistical tests are an essential part of an ongoing 
research investigation. Fisher continued: 

Their [the p-value’s] function is to prevent us from being deceived by accidental 
occurrences…. It is common practice to judge a result significant, if it is of such a 
magnitude that it would have been produced by chance not more frequently than once 
in twenty trials. …The test of significance only tells him [the researcher] what to 
ignore, namely all experiments in which significant results are not obtained. He 
should only claim that a phenomenon is experimentally demonstrable when he knows 
how to design an experiment so that it will rarely fail to give a significant result. 
Consequently, isolated significant results which he does not know how to reproduce 
are left in suspense pending further investigation. (p. 189) 
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In response to the prevalent criticism of NHST procedures by psychologists, Krantz 
(1999) also describes the role of the significance test as a small part in a larger research 
investigation. Krantz argues that too often applied researchers believe they are using 
significance tests to validate a theory. Most NHST studies do not provide evidence that 
validate nor falsify a theory in the Popperian sense (see Popper, 1963). “What is missing 
from this viewpoint is that formal statistical methods are not the whole, but only a part of 
inductive inference (and in many areas of science only a minor part)” (Krantz, 1999, p. 
1374).  

Krantz attempts to clarify that NHST procedures have five distinct uses, to:  
1. Check the adequacy of a provisional working model; 
2. Evaluate important model parameters; 
3. Show results that seem to confirm that a theory is not attributable to mere chance;  
4. Test a serious (approximate) null hypothesis; and 
5. Choose an appropriate action or policy. 
It is the “confusion among these distinct uses [that] underlies both the abuses of 

hypothesis testing…and the overreaction of the critics” (p. 1375).  However, when 
properly used and interpreted, p-values and NHST can move research in a verifiable, 
philosophically and scientifically sound direction. Statisticians develop statistical 
methods to be useful in the analysis of data; “if people misapply them, this is…a problem 
for education, not for statistical research. …The intrinsic value of statistical methods is 
judged by their costs and their benefits when properly used, not by the blunders of the 
poorly educated” (p. 1374). 

 
2.3.  THE TAXONOMY OF INFERENCE LEARNING OUTCOMES 
 

Toward a proper understanding and use of inference procedures, psychology and 
statistics education researchers have documented important inferential concepts to learn 
and differentiate, as well as common misconceptions and misinterpretations to suppress. 
The review of the literature gave rise to a working taxonomy of difficulties that people 
have had with NHST procedures, p-values and, to a lesser degree, confidence intervals 
(see Table 1.) Students should be able to recognize six basic concepts related to the p-
value, denoted as Basic-1 through Basic-6 for reference throughout this paper. Students 
should also be able to differentiate between seven interconnected concepts, denoted as 
Connected-7 through Connected-13. They should also be able to interpret inferential 
results, denoted as Logic-14 through Logic-18. Ultimately, students should be able to 
evaluate procedural and inferential validity, denoted as Validity-19 and Validity-20. This 
taxonomy includes both correct concepts to be attained and the misconceptions that need 
to be suppressed. 

These 20 inference learning outcomes are measured by the 36 items that comprise the 
Reasoning about P-values and Statistical Significance (RPASS-10) scale (Lane-Getaz, 
2007; 2010; 2011; 2013). The RPASS scale was developed to assess the effects of 
different teaching methods on inference learning outcomes. The current version of this 
scale (version 10) appears in Appendix A and is further described in Section 3.3. Each of 
the 20 inference learning outcomes enumerated in Table 1 is tied to at least one RPASS-
10 item, either explicitly or implicitly. The mapping of the taxonomy of inference 
learning outcomes onto RPASS-10 is documented in Appendix B.  

 
Table 1. Taxonomy of inference learning outcomes with literature references 

 
Inference learning outcome Reference 
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Recognize basic concepts (Basic-1 through Basic-6) 
1. Recognize that a small p-value measures rareness or 

unusualness, when the null hypothesis is true. 
Carver, 1978; Fisher, 1929; 
Saldanha & Thompson, 
2006; Schneider, 2015 

2. Recognize that a small p-value is indicative of 
statistical significance 

Lane-Getaz, 2013 

3. Recognize that the p-value is conditioned on the null 
hypothesis being true.  

Ancker, 2006;  
Diaz & Batanero, 2009; 
Falk, 1986 

4. Recognize that the p-value is indirectly related to 
sample size. 

Mogie, 2004;  
Wilkerson & Olson, 1997 

5. Recognize that the magnitude of the p-value depends on 
the direction of the alternative hypothesis. 

Lane-Getaz, 2013 

6. Recognize that the p-value may not be small; large p-
values indicate the sample did not support the research 
hypothesis. 

Lane-Getaz, 2013; 
Williams, 1999 

Differentiate connected concepts (Connected-7 through Connected-13) 
 Differentiate a p-value from the significance level ( Hubbard & Bayarri, 2003;  
8. Differentiate between Type I and Type II (error Schneider, 2015 
9. Differentiate statistical significance from practical 

importance.  
Tyler, 1931; Gliner, Leech, 
& Morgan, 2002 

10. Differentiate strength of evidence (p-values) from the 
size of an effect.  

Gliner, Leech, & Morgan, 
2002 

11. Differentiate sample statistics from population 
parameters. 

Lane-Getaz, 2013; Mittag & 
Thompson, 2000 

12. Differentiate reliability or repeatability from statistical 
significance; “1 - p-value” is not a measure of 
reliability.  (Note: Not explicitly assessed in this study.) 

Oakes, 1986;  
Haller & Kraus, 2002 

13. Differentiate variation within (spreads) from variation 
between (effects). 

Reading & Reed, 2010; 
Zieffler, Garfield, delMas, 
& Reading, 2008; Wild, 
Pfannkuch, Regan, & 
Horton, 2011 

Interpret inferential results (Logic-14 through Logic-18) 
14. Interpret a confidence interval to assess statistical 

significance as a complement to—or in lieu of—NHST 
and p-values. 

Lane-Getaz, 2013 
Capraro, 2004; Cumming & 
Fidler, 2002 

15. Suppress the misinterpretation of the p-value as the 
P(Ho|data); switching the null hypothesis with the data 
in the conditional probability; aka confusion of the 
converse. (Note: Not explicitly assessed in this study.) 

Batanero, 2000;  
Cohen, 1994; Falk & 
Greenbaum, 1995; Lane-
Getaz, 2007 

16. Suppress the misinterpretation of the p-value as a 
deterministic proof by contradiction. Inferential logic 
introduces probabilistic thinking, Type I error and pre-
conditions for inference to be satisfied; aka illusion of 
contrapositive proof by contradiction. 

Batanero, 2000; Cohen, 
1994; Falk, 2008; Falk & 
Greenbaum, 1995; Hagen, 
1997; Kirk, 1996 

17. Suppress the misinterpretation of the p-value as the 
probability that research results were “due to chance;” 
aka odds-against-chance fallacy.  

Carver, 1978, p. 5  

18. Suppress the misinterpretation of the p-value as the 
probability that one of the hypotheses (null or 
alternative) is true or false.  

Oakes, 1986; Haller & 
Kraus, 2002  

Evaluate procedural and inferential validity (Validity-19 through Validity-20) 
19. Evaluate validity of the procedure based on how well 

the necessary conditions for inference were met. 
Hahn & Meeker, 1993  
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20. Evaluate the validity of inferences to be drawn based on 
how randomization was used in the study design, aka 
scope of inference. 

Lane-Getaz, 2013; Ramsey 
& Schafer, 2002; Robinson, 
Levin, Thomas, Pituch, & 
Vaughn, 2007 

 
2.4.  RESEARCH QUESTIONS 
 

To reiterate Krantz’s (1999) admonition, “The intrinsic value of statistical methods is 
judged by their costs and their benefits when properly used, not by the blunders of the 
poorly educated” (p. 1374). Rather than concede to a broad-brushed dismissal of 
inference procedures, Krantz’s statement prompts statistics education researchers to 
identify the obstacles to understanding, propose interventions and assess the impact on 
inference learning outcomes. A new generation of social scientists awaits a proper 
understanding of inference. To this end, this study will address these three research 
questions:  
1. Which inference learning outcomes did students learn during an introductory 

statistics course? 
2. After instruction, which of the inference learning outcomes remained elusive?  
3. What do posttest explanations reveal about persistently difficult inference learning 

outcomes? 
 

3. METHODS 
 

3.1.  SUBJECTS AND SETTING 
 
The current study was conducted during spring semester of 2014 at a small liberal 

arts college of approximately 3000 students located in the US upper Midwest. Pretest and 
posttest data were collected in an introductory-level statistics literacy course aimed at 
students in the social sciences. Out of 79 students enrolled in the course, 69 completed 
both tests and consented to participate in this study, an 87% response rate. Respondents 
include: (53) females, (15) males and (1) did not provide a gender response. There were 
(28) first years, (29) sophomores, (9) juniors and (3) seniors. Nearly half of the students 
majored in or intended to major in psychology or sociology/anthropology (see Table 2). 
Most first and second year students have not yet declared majors. 

 
Table 2.  Respondents’ major or, if not yet declared, intended major, N= 69 

 
Majora Count 
Psychology 20 
Sociology / Anthropology 12 
Biology   6 
Exercise Science, Political Science (4 each)   8 
Social Work, English (3 each)   6 
Economics, Music, Environmental Studies, Nursing, Spanish, Theater (2 each) 12 
Dance, Philosophy, Art (1 each)   3 
Undecided or n/a   2 

Note. aFirst major mentioned in the class survey is reflected, if multiple majors were described. 
 
3.2.  TEACHING PHILOSOPHY AND COURSE CONTENT 
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This introductory statistics course was designed to improve statistical literacy for 
students who planned to major in the social sciences. There is an algebra prerequisite; no 
calculus is required. The 79-student class met twice per week (85 and 80 minute 
sessions). Lecture days were closely aligned with the text and included some in-class 
group activities, group quizzes, and investigations. The textbook, Seeing through 
Statistics (Utts, 2005) has been lauded for helping students develop statistical literacy, for 
taking a critical eye to statistics encountered in the real world, and for its emphasis on 
understanding statistics rather than computing them (Cavanaugh, 2007; Lamprecht, 
1996). To meet the needs of the client disciplines, students participated in a 55-minute 
per week lab to learn the Statistical Program for the Social Sciences (SPSS). The class 
was split into three subsections for the labs. Students developed skills necessary for their 
culminating research projects with the help of two teaching assistants and the instructor. 
The final two weeks of lectures diverged from the textbook material to discuss creation 
and interpretation of SPSS output for t-tests, chi-square tests, ANOVA and regression, 
reinforcing the lessons from the lab sessions. 

As a statistics education reformer, the instructor aimed to emphasize a stronger 
conceptual foundation for inference by adding randomization and simulation activities to 
the course. Simulation has been shown to improve conceptual understanding of inference 
(Lane-Getaz, 2013; Tintle, VanderStoep, Holmes, Quisenberry, & Swanson, 2011). 
Statistics education reformer Cobb (2007) recommended stressing the randomization and 
simulation process in the introductory course. He also coined a handy phrase, to stress 
“The Three R's of inference,” namely to: Randomize the data, Repeat the process, and 
Reject models that put your data in the tails of the null distribution. After multiple 
semesters teaching the course without the randomization and simulation content, a two-
week module was piloted during spring 2014 in lieu of the probability content (i.e., 
omitting Utts (2005), Chapters 16-18). “Randomize, Repeat, and Reject” was the 
drumbeat for the added lectures and labs. Refer to Appendix C for the schedule of 
textbook chapters, lecture topics and lab topics by day. 

Two lab sessions were devoted to the randomization test: one for a categorical 
response variable and the other for a quantitative response variable. For the categorical 
lab students shuffled playing cards to gain a concrete experience with the randomization 
process. After creating a null distribution with the class data, students used an online 
applet to repeat the random assignment many more times and ultimately to make a 
rejection decision (see Dolphin Study, Rossman (2008), at 
http://www.rossmanchance.com/applets/). During the quantitative lab students 
randomized quantitative response data. They shuffled pieces of paper with the 
quantitative values written on them to conduct the randomization by hand, computed and 
plotted the means, and produced a null distribution from the class data. Again, students 
used an online applet to repeat many times, then made a rejection decision 
(http://www.rossmanchance.com/applets/randomization20/Randomization.html). 

 
3.3.  MEASUREMENT 

 
RPASS-10 Pretest and Posttest Pretest and posttest data were collected using the 

Reasoning about P-values and Statistical Significance (RPASS-10) scale. The RPASS was 
designed as a research tool to assess the effects of different teaching methods on 
inference learning outcomes (see Lane-Getaz, 2013). The RPASS-10 Pretest was 
administered during the first weekly lab session of the semester. Similarly, the RPASS-10 
Posttest was administered during the last weekly lab session. RPASS-10 scenarios and 
items appear in Appendix A. 
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RPASS-10 Item content, formats and scoring RPASS-10 items are a sampling of 

conceptual knowledge from across the domain of inference learning outcomes. The 36 
RPASS-10 items explicitly assess eighteen of the concepts listed in the taxonomy of 
inference learning outcomes (Table 1). Eighteen items assess whether the respondents 
recognize basic concepts. Twelve items assess if they differentiate connected concepts. 
Five items assess how the respondents interpret inferential results. Two items assess 
whether they can evaluate procedural and inferential validity.  

The RPASS-10 instrument presents contextual scenarios followed by multiple-choice 
items. There are 24 two-option items, 9 three-option items and 3 four-option items. All 36 
items are dichotomously scored, right (1) or wrong (0). In addition, students are asked to 
explain their reasoning for 19 of the 36 items that were chosen due to previous challenges 
students had with the particular item or concept.  

Refer to Appendix B for a listing of the RPASS-10 scenario numbers and item 
numbers grouped within the taxonomy of inference learning outcomes, ordered by the 
Posttest proportion correct. Also noted is the Pretest proportion correct, the learning gain 
(or loss) for the item, and a categorization as a correct concept (C) or misconception (M).  

 
3.4.  PROCEDURES 
 

Graphical and numerical summaries and reliability estimates are reported for the 
RPASS-10 Pretest and Posttest total score distributions. The internal consistency 
reliability estimates are reported using Cronbach’s coefficient  and Guttman’s Lambda-
6 (6). Guttman’s 6 estimate tends to be higher than Cronbach’s  for dichotomously 
scored items, as is the case with RPASS-10. Beyond this initial analysis of the total score 
distributions and the reliability of the total scores, an item level analysis was conducted to 
report what the students learned in light of each of the three research questions. 
 

Which of the inference learning outcomes did students learn during an 
introductory statistics course? Two plots of item responses help to examine this first 
research question. The items were plotted as a coordinate pair (p1, p2), where p1 is the 
proportion of respondents answering correctly on the Pretest and p2 is the Posttest 
proportion answering correctly. The y = x line superimposed on the plot delineates items 
with no change (no learning gain nor loss). A “canoe-shaped” 95% confidence band 
along y = x demarcates the area of plausible variation, if there were no change in Pretest 
to Posttest proportions (Lane-Getaz, 2014). Items appearing outside the confidence bands 
indicate statistically significant differences in the proportions answering correctly. Items 
within the confidence bands suggest insignificant differences. The margin of error 
includes the Wilson adjustment to maintain the 95% nominal rate (Agresti & Caffo, 
2000). Because no inferential conclusions were drawn, no family-wise corrections were 
made. The two canoe plots provide two lenses for examining item results: one plot was 
encoded by statistically significant learning gains (or losses) and the other plot was 
encoded by the inference learning outcomes taxonomy. A cross-tabular summary 
provides the count and proportion of learning gains or losses broken out by the inference 
learning outcome taxonomy. 

 
After instruction, which of the inference learning outcomes remained elusive? 

Misconceptions may or may not be elusive concepts for these respondents. The teaching 
method used may have suppressed some common difficulties on the one hand and on the 
other hand may have inadvertently introduced other challenges. A third canoe plot was 
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produced to examine potential patterns among correct concepts and misconceptions 
related to learning gains and losses. A cross-tabular summary reports the count and 
proportion of learning gains or losses by a categorization of the items as correct concept 
or misconception.  

Elusive concepts were defined as any items with Posttest proportions with less than 
70% of respondents answering correctly. Four quadrants were delineated on the canoe 
plots at the lines for a 70% correct response on Pretest and Posttest. Generally, items with 
low Posttest proportions, that appear in the lower two quadrants of the canoe plot (p2 < 
.70), indicate persistent difficulties. The most surprising results are items with a high 
Pretest (p1 > .70) and a low Posttest proportion (p2 < .70) that appear in the lower right 
quadrant of the canoe plot. These item results suggest that something in the course may 
have introduced a misconception or difficulty. The upper right quadrant items indicate 
concepts the respondents knew on both the Pretest and Posttest. These items are 
indicative of prior knowledge, ostensibly from statistics exposure within the K-12 
curriculum. Finally, items in the upper left quadrant with low Pretest and high Posttest 
are most desirable, indicating learning during the course. 

 
What do Posttest explanations reveal about persistently difficult inference learning 

outcomes? The analysis of respondents to answer this question was limited to the 
intersection of: (1) 19 items where an explanation was requested; (2) seven of these items 
that surfaced as elusive; and (3) items with the lowest Posttest proportion correct within 
an inference learning outcome category (see Appendix A). The outcomes discussed 
include: recognizing a basic concept (item 3b-3), differentiating a connected concept 
(item 3c-1), and interpreting an inferential result (item 2-5). There was no explanation 
request associated with the difficult item in the evaluating validity category. Examining 
incorrect themes in respondents’ explanations may help identify the crux of the 
respondents’ confusion. Once the difficulty is documented, a teaching intervention can be 
designed and tested to attempt to address the misconception or difficulty. 

 
4. RESULTS 

 
The 69 respondents answered 72.7% of the 36 RPASS-10 items correctly for the 

Posttest, on average (M = 26.16, SD = 4.32, Med = 26, IQR = 5) compared to 55% correct 
on the Pretest (M = 19.8, SD = 3.72, Med = 26, IQR = 5). The average gain was 6.36 
items. Pretest and Posttest distributions for the total correct scores appear in Figure 1 and 
2 as comparative boxplots and density plots, respectively. Internal consistency reliability, 
the proportion of variation in RPASS-10 scores that are attributed to true score variation 
(rather than error), are Posttest: 6 = .88,  = .69, and Pretest: 6 = .73,  = .42. Further 
results of this study are organized by the three research questions. 
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4.1.  RESULT 1: INFERENCE LEARNING OUTCOMES THAT STUDENTS 
LEARNED DURING THE INTRODUCTORY STATISITICS COURSE 
 
Delving deeper than aggregated scores, an item-level analysis reveals more about 

what respondents learned. Item results are reported by statistically significant learning 
gains or losses and by the taxonomy of inference learning outcomes. The “canoe plot” in 
Figure 3 plots the proportion of students answering each item correctly on the Pretest (p1) 
and Posttest (p2) as an ordered pair (p1, p2), encoded by statistically significant learning 
gains or losses.  

There were 20 items above the 95% confidence band that indicated statistically 
significant learning gains. Fourteen items within the confidence bands showed no 
significant change. Two items below the bands showed a statistically significant learning 
loss. It is important to note that there were items with a low Posttest (p2 < 70%) and a 
statistically significant learning gain. Even though these concepts are apparently difficult, 
considerable progress was made in a one-semester course. See Appendix B for a listing of 
the RPASS-10 items with the proportion correct for the Posttest and Pretest, and the 
Learning Gains by item listed within the taxonomy of inference learning outcomes.  

 

 
 

Figure 1. Boxplot of RPASS-10 Total 
Scores: Pretest and Posttest, N = 69 

 
Figure 2. Density plot of RPASS-10 Total 

Scores: Pretest and Posttest, N = 69 
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Figure 3. 36 RPASS-10 items plotted as ordered pairs (p1, p2) with Pretest Proportion 

(p1) and Posttest Proportion (p2), encoded by Learning Gains or Losses, N = 69 
 

In Figure 4 the item results are encoded by the taxonomy of inference learning 
outcomes. Furthermore, Table 3 provides a cross-tabulation of the count and proportion 
of RPASS-10 items by significant learning gains or losses broken out by the inference 
learning outcome taxonomy.  

 



367 
 

 
 

Figure 4. 36 RPASS-10 items plotted as ordered pairs (p1, p2) with Pretest Proportion 
(p1) and Posttest Proportion (p2), encoded by Inference Learning Outcomes, N = 69 
 
Table 3. Cross-tabulation of the Count and Proportion of 36 RPASS-10 items by 
Significant Learning Gain or Loss broken out by Inference Learning Outcome 

  

Significant 
Learning 

Gain or Loss 

Inference Learning Outcome 
Recognize 

Basic 
Concepts 

Differentiate 
Connected 
Concepts 

Interpret 
Inferential 

Results 
Evaluate 
Validity Total 

Learning Gain    9 .50   6 .55 4 .80 1 .50 20 
No change   8 .44   5 .45 0 .00 1 .50 14 
Learning Loss    1 .06   0 .00 1 .20 0 .00   2 
Total 18  11  5  2  36 

 
There were significant gains in the proportion of respondents answering items 

correctly across all four categories of the inference learning outcomes. Respondents 
recognized basic concepts, differentiated connected concepts, interpreted inferential 
results and evaluated validity. Items contributing to these statistically significant learning 
gains are described. 
 

Gains recognizing “basic concepts” Nine of the 18 basic concept items appear above 
the confidence bands, indicating statistically significant learning gains in the proportion 
of respondents answering correctly. Respondents learned to recognize four concepts: 
 That a small p-value measures rareness or unusualness, when the null hypothesis is 

true (Basic-1: 1-1, 2-1, 6-1). 
 That a small p-value is indicative of statistical significance (Basic-2: 6-2). 
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 That the magnitude of the p-value depends on the direction of the alternative 
hypothesis (Basic-5: 1-3, 4b-1, 3b-2) (Note: For Item 1-3, despite statistically 
significant gains the Posttest proportion was still lower than the threshold, p2 < 70%.)  

 That the p-value may not be small; large p-values indicate the sample did not support 
the research hypothesis (Basic-6: 3a-3, 3b-1). 
 
Gains differentiating “connected concepts” Six of the 11 items associated with 

connected concepts showed significant learning gains during the course. The items are 
associated with three connected concepts. Respondents were able to differentiate: 
 P-values from significance level ( (Connected-7: 4a-1). 
 Concepts of Type I () and Type II () error (Connected-8: 6-7). 
 Strength of evidence (p-values) from size of an effect (Connected-10: 2-2, 4a-2, 5-3, 

6-3). 
 
Gains interpreting “inferential results” Four of the five interpret inferential results 

concepts are measured by RPASS-10. Two misinterpretations were successfully 
suppressed with statistically significant gains. Respondents were able to suppress:  
 The misinterpretation of the p-value as the deterministic contrapositive proof by 

contradiction (Logic-16: 3a-1).  
 The misinterpretation of the p-value as the probability that research results were “due 

to chance;” aka odds-against-chance fantasy (Logic-17: 2-4). 
 
Gains evaluating “validity” There was a statistically significant gain in the 

proportion of respondents who evaluated the validity of inferences to be drawn. Even 
with a small p-value, respondents understood that inferential validity is limited by how 
randomization was used in the study design (Validity-20: 4a-3). 
 
4.2.  RESULT 2: INFERENCE LEARNING OUTCOMES THAT REMAINED 

ELUSIVE AFTER INSTRUCTION 
 
A third canoe plot facilitates identifying patterns among correct concepts and 

misconceptions that may be related to learning gains and losses (Figure 5). RPASS-10 
items measure 11 correct concepts, 12 known misconceptions and 13 items measure a 
combination of both. Table 4 reports the count and proportion of RPASS-10 items with 
statistically significant learning gains or losses broken out by a categorization of the item 
as a correct concept, misconception or if the items measures a combination of both.  

The cross-tabular results suggest that the number of items with significant learning 
gains primarily stems from suppressing or overturning known misconceptions. Seventy-
five percent of respondents made statistically significant gains relative to known 
misconceptions. Items that remained elusive—in the lower two quadrants of the canoe 
plots—include correct concepts, misconceptions as well as combinations of the two.  

Table 5 provides a cross-tabulation of the count and proportion of RPASS-10 items 
with Posttest proportions above or below the 70% criterion and broken out by the four 
inference learning outcomes categories. Seven concepts emerge that seem to remain 
elusive, at least one from each of the inference learning outcome categories. Three of 
these items (3b-3, 3c-2, and 2-5) are explored further in Section 4.3 by examining 
respondent Posttest explanations.  
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Figure 5. 36 RPASS-10 items plotted as ordered pairs (p1, p2) with Pretest Proportion 
(p1) and Posttest Proportion (p2), encoded by Concept or Misconception, N = 69 

 
Table 4. Cross-tabulation of the Count and Proportion of 36 RPASS-10 items by 

Significant Learning Gain or Loss broken out by Correct Concept or Misconception 
 

Significant Learning 
Gain or Loss 

Correct Concept or Misconception Assessed  
Correct Concept Misconception Combination Total 

Learning Gain   5 .45   9 .75   6 .46 20 
No change     5 .45   2 .17   7 .54 14 
Learning Loss   1 .10   1 .08   0 .00   2 
Total 11  12  13  36 

 
Table 5. Cross-tabulation of the Count and Proportion of 36 RPASS-10 items by  

High or Low Posttest proportion broken out by Inference Learning Outcome  
 

 Inference Learning Outcome 

Posttest proportion 
correct 

Recognize 
Basic 

Concepts 

Differentiate 
Connected 
Concepts 

Interpret 
Inferential 

Results 
Evaluate 
Validity Total 

High Posttest (p2 > .70) 14 .78   8 .73 2 .40 1 .50 25 
Low Posttest (p2 < .70)   4 .22   3 .27 3 .60 1 .50 11 
Total 18 11 5 2 36 

 
Two “basic concepts” seemed to remained elusive The first elusive basic concept 

was recognition that the magnitude of the p-value depends on the direction of the 
alternative hypothesis (Basic-5). Even though item 1-3 seems to have been difficult, there 
were statistically significant gains for this item. Furthermore, the remaining three Basic-5 
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items did not corroborate this difficulty (see Appendix B). The second elusive concept 
was recognition that the p-value may not be small; that large p-values indicate the sample 
did not support the research hypothesis (Basic-6). Three of the five Basic-6 items (3b-3, 
3b-4, 4b-3) had low Posttest proportions, which is indicative of a systematic underlying 
misconception. Furthermore, there was a significant learning loss for item 3b-3. Posttest 
explanations for item 3b-3 are further examined to shed light on the source of this 
apparent difficulty in Section 4.3. 

 
Two “connected concepts” seemed to remain elusive An isolated item suggests that 

respondents struggle to differentiate random samples from population parameters 
(Connected-11: 5-4). Regretfully, no Posttest explanations were requested for this item to 
examine the source of the confusion. However, there was additional evidence of this 
confusion in response to using confidence intervals to assess significance as reported in 
Section 4.3 and discussed in Section 5.3. It was difficult to tell if the students failed to 
make the correct inference from the sample statistics to the population parameter because 
they thought it was redundant or if the decision they made had another source of 
confusion. A new item needs to be added to the RPASS scale to better tease out this 
student difficulty in addition to asking students to explain their reasoning for this item. 

The other elusive connected concept outcome was corroborated by two items on the 
test to assess respondents’ consideration of within variation and between variation 
(Connected-13: 3c-1, 3c-2). Respondent Posttest explanations for item 3c-1 are also 
examined in Section 4.3 and discussed in Section 5.3 to identify patterns in student 
thinking. 

 
Two “inferential results” concepts seemed to remain elusive Interpreting a 

confidence interval to assess statistical significance as a complement to—or in lieu of—
NHST was an elusive concept for many respondents (Logic-14). It is of concern that there 
was a significant learning loss for the item assessing this outcome (2-5). Explanations for 
this item were examined to provide some insight for a teaching intervention. A second 
interpret inferential results outcome presented challenges. Two items measure these well-
documented misinterpretations of the p-value. One is the probability that null hypothesis 
is false (Logic-18: 5-1). The other is the probability that the alternative hypothesis is true 
(Logic-18: 5-2). While these concepts remained elusive for some, these two items had 
statistically significant gains, which provide evidence that these misconceptions can be 
overturned or at least suppressed, given proper focus. 

 
One “validity” concept seemed to remain elusive Respondents simply failed to 

evaluate whether the necessary conditions for inference were met for item 6-6 (Validity-
19). This is not a surprising outcome. Checking conditions for inferential procedures is 
discussed and practiced in this course. However, greater emphasis and focus is placed on 
checking conditions for inferential procedures in the second course. 
 
4.3.  RESULT 3: WHAT POSTTEST EXPLANATIONS REVEALED ABOUT 

PERSISTENTLY DIFFICULT LEARNING OUTCOMES 
 

Seven elusive concepts emerged from the results of 11 items with low Posttest 
proportions (p2 < .70). Two of these concepts are of less concern because there were 
statistically significant learning gains for the associated items (Basic-5: 1-3, Logic-18: 5-
1 and 5-2). Four items did not include a prompt to “Explain your reasoning”  (Basic-6: 
3b-4, 4b-3, Connected-11: 5-4 and Validity-19: 6-6). The results of the remaining four 
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items illuminate three elusive inference learning outcomes: one basic concept (Basic-6: 
3b-3), one connected concept (Connected-13: 3c-1 and 3c-2), and one interpretation of 
inferential results concept (Logic-14: 2-5). The following results examine each of the 
three elusive concepts. Of particular interest are the two items on the RPASS-10 Posttest 
with statistically significant learning losses (Basic-6: 3b-3 and Logic-14: 2-5). 

   
Posttest explanations for recognizing that the p-value may not be small (Basic-6) 

There was a statistically significant learning loss for item 3b-3, one of the five items 
associated with “Recognize the p-value may not be small.” In total, three items assessing 
this concept had low Posttest proportions, suggesting there is a real obstacle for these 
respondents. For item 3b-3 (see Appendix A, Scenario 3b, item 3), respondents read that 
student researchers expected to show that Radium-226 levels in the soil were less than the 
EPA maximum safe criterion of 4 pCi/L. The mean Radium-226 from the sample of 32 
soil specimens was actually higher than expected, namely 4.1 pCi/L. The center of the 
null distribution was 4.0 pCi/L with the observed mean identified at 4.1 pCi/L. With 
conditions checked, respondents were asked whether the p-value could be illustrated by 
shading the area to the left of the sample mean (which is correct). Among those who 
answered correctly, the most prevalent theme provided by 10 respondents, is reflected by 
this statement:  

Yes because they were conducting a one-tailed hypothesis test stating that the levels 
of pCi/L would be lower than 4 pCi/L, but their results showed the levels being 
greater than 4 pCi/L. Therefore, the p-value is the area to the left of the their observed 
sample mean. 
Among those who answered the item incorrectly, 23 respondents wrote an 

explanation much like this one, “The p-value could be estimated by shading the area to 
the RIGHT of the observed mean.” [Emphasis in original.] Explanations such as these, 
reveal a clear obstacle shading the area for a p-value for a one-sided hypothesis test when 
the observed statistic is in the opposite direction from what was hypothesized by the 
researcher. 

 
Posttest explanations for differentiating variation within versus between 

(Connected-13) There was no significant improvement in the proportion of respondents 
who could differentiate within variation from between variation. Respondents were asked 
to choose the most convincing evidence among four sets of boxplots that would 
distinguish between two group’s running times (see Appendix A, Scenario 3c, item 1). 
Note that the second item (3c-2) had equivalent explanations to those for item (3c-1). One 
group of runners was randomized to use a standard training program and the other group 
added weight training to the standard training program. The Posttest explanations 
provided by 30 respondents who answered item 3c-1 correctly were similar to this:  

Although the mean scores are farther apart on boxplots c, boxplots a have the least 
amount of variablility [sic]. This shows that there is no huge number skewing the 
data, the fact that the whole group got basically the same time shows that the methods 
differ greatly because less variance tells us that the relationship was stronger and 
there were little to no big outliers. 
Among those who answered item 3c-1 incorrectly, some 25 respondents wrote an 

explanation similar to this one:  
The medians on Boxplot C have the largest difference in distance and since the 
median is the average, the average difference is quite large between the weight and 
standard training compared to the other boxplots. 



372 
 

These explanations revealed that many students only attended to the centers when 
comparing the two distributions and failed to account for the spreads of the distributions. 

 
Posttest explanations for using confidence intervals to assess significance (Logic-

14) There was a statistically significant learning loss for the item associated with this 
learning outcome. Posttest respondents were asked whether a confidence interval could 
be used to assess statistical significance as a complement to—or in lieu of—NHST (see 
Appendix A, Scenario 2, item 5). Of the forty-five Posttest respondents who answered 
this item correctly, 39 wrote explanations and 27 were much like this one:  

If the researchers found that the 95% confidence interval did not include 100, then 
they would know that even taking into account plausible variation in population 
means, the result of 102 would not have been observed if the null hypothesis were 
true, therefore their results are statistically significant. They would also know the 
direction in which the observed results were different from the null hypothesis 
(whether the interval was above or below 100). 
Twelve of the remaining explanations were patently wrong or vague, much like this 

one “Confidence intervals should include the hypothesized or observed mean in the range 
to show statistical significance.” Note the conflation of the sample and population 
implied in this quote, which may be the source of students’ difficulty with this item. 

Of those who answered item 2-5 incorrectly, their explanations reflected their 
confusion. One of the two most prevalent explanations was written by nine respondents 
who wrote something much like this: “The confidence interval isn't testing statistical 
significance, but rather seeing if their observed mean falls into the range of likely true 
means.” Again, note the confusion between the sample and population in this statement. 
The next most common explanation was written by seven respondents who essentially 
wrote: “Because they should have done a 95% confidence interval test, centered around 
100 and then looked at how many standard deviations away the mean of 102 was from 
the center to assess the statistical significance.” These students apparently wanted to 
conduct a hypothesis test. 

 
5. DISCUSSION 

 
The results of this study show that during a one-semester introductory statistics 

course most social science students achieved statistically significant gains for 20 of the 36 
RPASS-10 items. There were learning gains across the taxonomy of inference learning 
outcomes. Respondents improved in their ability to recognize basic concepts (Basic-1, 
Basic-2, Basic-5, Basic-6), to differentiate connected inferential concepts (Connected-7, 
Connected-8, Connected-10), to interpret results (Logic-16 and Logic-17) and to evaluate 
inferential validity (Validity-20). The respondents’ inference learning outcomes are 
discussed in light of each of the three research questions. 

 
5.1.  DISCUSSION 1: INFERENCE LEARNING OUTCOMES THAT STUDENTS 

LEARNED DURING THE INTRODUCTORY COURSE 
 

Respondents achieved significant gains recognizing “basic concepts” They 
recognized p-value definitions, statistical significance, that the p-value is dependent on 
the direction of the test, and the p-value may not be small (Basic-1, Basic-2, Basic-5, and 
Basic-6). There were nine basic concept items that showed significant learning gains 
from Pretest to Posttest. There were no learning gains associated with two concepts that 
were answered correctly on the Pretests and Posttests recognizing how p-values are 
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indirectly related to sample size and the p-values are conditioned on the null being true 
(Basic-3, Basic-4) 

 
Respondents achieved significant gains differentiating “connected concepts” More 
respondents were able to differentiate connected concepts. Inconsistent with some of the 
existing research on common misconceptions (Garfield & Ahlgren, 1988), respondents 
did differentiate p-values from the significance level  (see Connected-7).In some 
research circles p-values have errantly been dubbed “observed significance levels”, which 
is believed to have contributed to this confusion in the past (Hubbard & Bayarri, 2003; 
Schneider, 2015). Careful use of language seems to obviate the confusion. Respondents 
also differentiated concepts of Type I error from Type II error  (Connected-8).  

The remaining connected concept is well supported by multiple item responses. Four 
items—all with significant gains—provide evidence that respondents were able to 
differentiate between the strength of evidence (p-values) and the size of an effect by the 
end of the course (Connected-10). These results are encouraging in light of the research 
of Gliner, Leech, and Morgan (2002) who found that few of the textbooks that they 
reviewed covered well the relationships between p-values, effects, and evidence. These 
results also run counter to the results reported by Wilkerson and Olson (1997) who found 
that graduate student researchers tend to confuse relationships between samples sizes, 
significance, and effects. For example, if two studies produce the same p-value, the 
graduate students failed to understand that the study with the smaller sample size has a 
larger treatment effect (also see Gregiore, 2001). These topics are handled well in Utts 
(2005), Chapter 13.4. 

 
Respondents achieved significant gains interpreting “inferential results” 

Respondents came to a more subtle understanding of NHST than merely to reject the null 
hypothesis when p <  Most respondents improved in their ability to suppress known 
misinterpretations that can plague how they interpret inferential results. They suppressed 
the misinterpretation of the p-value as a deterministic proof by contradiction (Logic-16). 
This misinterpretation is sometimes referred to as the illusion of probabilistic proof by 
contradiction, the misapplication of definitive contrapositive logic to a probabilistic event 
(see Cohen, 1994; Falk, 2008; Falk & Greenbaum, 1995; Hagen, 1997; Kirk, 1996). The 
Boolean logic of contrapositive proof hinges on the idea that if all squares are rectangles, 
and if we don’t have a rectangle; then we don’t have a square. Probabilistic logic follows 
this general pattern as well. However, there remains uncertainty in statistics. One cannot 
reject the null hypothesis with 100% certainty. Inferential logic is fuzzy. There is the 
potential for Type I error.  More importantly, a small p-value should always be suspect. 
One must evaluate whether the data collection methods warrant an inferential procedure. 
One must evaluate if conditions for the procedure are sufficiently met. If conditions are 
not checked, then the illusion of probabilistic proof by contradiction is likely. Although 
Boolean logic is a good foundation to interpret results, the logic of inference requires 
looking more broadly at the statistical process as a whole (see Falk, 2008; Hagen, 1997; 
O’Brien, 1973; Rubel, 2007; Tversky & Kahneman, 1974). These respondents seemed to 
understand this fairly well. 

Similarly, respondents suppressed the misinterpretation of the p-value as the 
probability that research results were “due to chance.” This phrase is nearly correct; if the 
probabilities are computed assuming the null is true. Carver (1978), a critic of 
significance test procedures, wrote that a small p-value (e.g., less than .05 or 1 in 20) has 
been misinterpreted as the “odds-against-chance fantasy” (not to be confused with the 
“odds against chance fallacy” aka the “gambler’s fallacy,” that a win will soon come after 
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a series of losses). Regretfully, Carver’s discussion of his “odds-against-chance fantasy” 
conflates probability with odds and p-values with significance levels but is worth the 
thought experiment. Carver cited a psychology textbook (Hebb, 1966), in which the 
“statistically significant results” were interpreted to mean the odds are 19 to 1 that chance 
caused the results observed. If the p-value is .05 or 1/20, are the “odds against” 19 to 1? 
The odds against what? This statement is mute about the null hypothesis being true. 
Carver explains this by using quasi-Bayesian language assigning 100% probability to the 
claim that the null hypothesis is true. He states:   

It is therefore impossible for the p value to be the probability that chance caused the 
mean difference between two research groups since (a) the p value was calculated by 
assuming that the probability was 1.00 that chance did cause the mean difference, and 
(b) the p value is used to decide whether to accept [sic] or reject the idea that 
probability is 1.00 that chance caused the mean difference. (p. 5) 
Carver was correct to critique the book author. However, his critique obfuscates the 

underlying issue. It seems likely that Carver’s motivation was to promote Bayesian 
probability in lieu of Frequentist probability, not to educate the reader on the proper 
interpretation of a p-value. Nevertheless, Carver did make a salient and important point. 
When one fails to reject the null hypothesis, he or she should not conclude that the results 
were therefore “caused by chance.” What one can say, when the null hypothesis is 
rejected, is that the results were not likely to be “caused by chance.” This is a subtle but 
important distinction. These respondents achieved significant gains recognizing that “the 
cause of the results obtained was clearly due to chance” was an invalid interpretation for 
item 2-4. 

 
Respondents achieved significant gains evaluating “validity” Respondents did learn 

one aspect of evaluating validity, that inferences must be based on how the data were 
gathered. The presence or absence of randomization in the study design determines the 
scope of inferences that can be drawn (Validity-20). Specifically, the respondents 
recognized that no casual conclusion could be drawn—even if a small p-value were 
obtained—unless the researcher had randomized the treatments in the design of the study. 
This is an important, higher-order learning outcome, often referred to as the scope of 
inference. Some researchers claim that failing to attend to the scope of inference may 
underlie many of the misuses of NHST procedures (e.g., Hahn & Meeker, 1993). 
 
5.2.  DISCUSSION 2: INFERENCE LEARNING OUTCOMES THAT REMAINED 

ELUSIVE AFTER INSTRUCTION 
 

As reported in the results, respondents wavered in their understanding of seven 
concepts across the taxonomy of inference learning outcomes: two basic concepts, two 
connected concepts, two interpretation concepts, and one validity concept. Each of these 
elusive concepts is further discussed based on the results from the associated problematic 
item and in light of the results from closely related items.   

 
Discussion of two “basic concepts” that remained elusive For item 1-3, respondents 

were confused about whether the p-value is doubled or cut in half when one computes a 
two-tailed p-value given a one-tailed p-value. The three other items in the Basic-5 
inference learning outcome category were answered sufficiently well (4b-1, 3b-2, 4b-2). 
Item 1-3 is more computational than the other three items, which are presented in light of 
a graphical representation of a null distribution (see Appendix A). Because conceptual 
understanding is the goal of this course, this is not a surprising result. This computational 
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difficulty is also reported by Aquilonious and Brenner (2015), “Mary and Nan divided all 
their p-values by two, independent of whether they were working a two-tailed test or not” 
(p. 23). This apparent confusion may be related to a general difficulty understanding one-
sided versus two-sided tests in general. This difficulty may also be related to confusion 
that the significance level is split on either side of the distribution for a two-sided 
hypothesis test. Item 1-3 gives numeric results for a one-sided p-value, which requires 
doubling the p-value to produce the results for a two-sided test. Although there remains 
room for improvement for this item, there were statistically significant gains, which is 
encouraging. 

A more disturbing confusion surrounds the basic interpretation of large p-values. 
Respondents must recognize that the p-value may not be small; large p-values indicate 
the sample did not support the research hypothesis (Basic-6). Respondents had 
considerable difficulties interpreting large p-values, particularly when the sample 
obtained was in the opposite direction than hypothesized, as is the case for item 3b-3. 
Williams (1999) also noted that her introductory students always expected p-values to be 
relatively small. Item 3b-3 is one of two RPASS-10 items with a significant learning loss 
from the Pretest. In addition, there are low Posttest results for two additional items among 
the five that assess the Basic-6 concept (3b-4 and 4b-4), suggesting a real obstacle exists. 
Respondent explanations for 3b-3 may shed light on the problem.  

 
Discussion of two “connected concepts” that remained elusive Only one item is 

related to this confusion between samples and populations (Connected-11). This item (5-
4) is among the lowest Posttest proportions on the test (p2 = .33). For item 5-4 
respondents had to decide if a statistically significant difference between two random 
samples suggests a true population difference. There was considerable confusion 
differentiating sample and population effects. Mittag and Thompson (2000) reported a 
similar finding in their survey of education researchers. The American Educational 
Research Association respondents believed p-values test the probability of results 
occurring in the sample, rather than the probability of results occurring in the 
hypothesized population. The low Posttest proportion correct in this study is consistent 
with results from previous introductory statistics classes (Lane-Getaz, 2013). This 
confusion also tends to emerge from at least one other item (i.e., using confidence 
intervals to assess significance, Logic-14: 2-5) as will be discussed. 

There are two complementary items that assess an apparent confusion between 
variation within and variation between (Connected-13: 3c-1 and 3c-2). As a result these 
items have identically low Pretest and Posttest proportions (i.e., p1 = .43, p2 = .49). 
Looking at the explanations for one of these items provided some insight into student 
thinking. Respondent explanations are explored for item 3c-1 in Section 4.3 and are 
further discussed in Section 5.3.  

 
Discussion of two “inferential results” concepts that remained elusive One elusive 

interpretation involved assessing statistical significance with a confidence interval 
(Logic-14). The one item assessing use of confidence intervals to assess significance (2-
5) was one of the two items with a statistically significant learning loss. To better 
understand these results, respondent explanations for item 2-5 were discussed in Section 
4.3. This item may be difficult for these students because the sample mean in this 
scenario is close to the hypothesized mean, which seems to further complicate the 
interpretation for these respondents. The explanations that they provided suggest that a 
less complex confidence interval item is needed to better corroborate and contrast results 
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with this item. The confusion may be an in ability to differentiate population parameters 
from sample statistics when constructing a confidence interval. 

The second elusive interpretation dealt with assigning probabilities to the null or 
alternative hypotheses (Logic-18). Some 67% of respondents correctly suppressed the 
misinterpretation that the p-value is the probability that the alternative hypothesis is true 
(5-2). Of course the p-value is a probability concerning data, not a probability related to 
either of the hypotheses. Even if one were to set aside this point for a moment, the fact 
that a third of the respondents believed that the small p-value of .01 for this item—which 
suggests rejecting the null hypothesis—means that there is also a low probability of the 
alternative being true reveals a deeper misunderstanding of the inferential logic.  

On a related item, only 55% of the respondents suppressed the misinterpretation of 
the small p-value as the probability that the null hypothesis is false. If one ignores the 
issue of assigning a probability to the null hypothesis, this misinterpretation suggests that 
45% of the respondents believed that the small p-value meant that the null hypothesis is 
false. Because small p-values are indeed inconsistent with the null, this misinterpretation 
suggests an emergent understanding of inferential logic. Recognizing that most students 
are attaining at least a partially correct understanding is encouraging and in particular, 
because both of these items had statistically significant gains.  

These quasi-Bayesian misinterpretations of the p-value are commonly cited as 
reasons to do away with NHST and the p-value altogether (see Cohen, 1994; Oakes, 
1986). Cohen attributes this common misinterpretation to the idea that most researchers 
actually want to know the probability associated with the hypotheses. However, the p-
value does not provide that measure. This point must be explicitly emphasized, because 
students tend to seek a short cut interpretation of the p-value, which often leads to their 
demise. 

 
Discussion of one “validity” concept that remained elusive Many respondents did 

not attend to the need to check conditions (Validity-19). Respondents should respond that 
no statistical test should be performed because conditions had not been met (p2 = .62). 
The fact that 38% of the respondents got this wrong is not particularly surprising because 
condition checking is emphasized to a lesser degree in this introductory course compared 
to the course for students in the natural sciences. There may be an opportunity to place a 
greater emphasis on why condition checking is needed within the randomization and 
simulation modules or in transition from using randomization and simulation 
distributions to using theoretical null distributions. Failing to check the necessary 
conditions for inference is arguably at the crux of many difficulties people have with the 
proper use and interpretation of statistical results (Hahn & Meeker, 1993). 

 
5.3.  DISCUSSION 3: WHAT POSTTEST EXPLANATIONS REVEALED ABOUT 

PERSISTENTLY DIFFICULT INFERENCE LEARNING OUTCOMES  
 

Respondent explanations revealed a difficulty with p-values that are not small, 
particularly if in the opposite direction from hypothesized (Basic-6: 3b-3). Depending 
on the specific scenario, respondents struggled with p-values that were large. For item 3b-
3 respondents failed to select the option to shade the p-value in the direction hypothesized 
by the researcher. The alternative hypothesis was left-sided; therefore, shading left would 
produce a p-value larger than .50. The p-value was, in fact, greater than .50 (which is 
explicitly asked in item 3b-4). A one-sided alternative hypothesis seemed to present a 
considerable hurdle when the results were in the opposite direction than the researcher 
expected. Respondents’ explanations showed a clear tendency to “want to shade RIGHT, 
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to the closest tail,” regardless. This difficulty appears to be related to recognizing that the 
magnitude of the p-value depends on the direction of the alternative hypothesis (Basic-5). 
Emphasizing two-sided tests accompanied by a confidence interval rather than one-sided 
tests may circumvent some of this confusion.  

This item’s results were inconsistent with two Basic-6 items with high Posttest 
proportions (3a-3, 3b-1). In item 3a-3 respondents were given a large p-value of .72 and 
correctly responded that the sample data did not support the research hypothesis  (p2 = 
.94). For item 3b-1 respondents saw a null distribution with a sample mean near the 
hypothesized value and most (p2 = .74) correctly responded that the results were not 
statistically significant. The problem seems to clearly point to the directional challenge 
with the problem scenario provided for 3b-3.  

 
Respondent explanations revealed a difficulty wrestling with variation within and 

between (Connected-13: 3c-1). Respondents showed no improvement in their ability to 
differentiate within variation from between variation. There are two related items in 
Appendix A (3c-1 and 3c-2 that assess students’ ability to employ informal inferential 
reasoning as described by Zieffler and colleagues (2008) and Wild et al. (2011). Out of 
the 34 respondents who correctly answered item 3c-1 on the Posttest, there were 29 
explanations. Twenty-seven described both the variation within and variation between the 
groups when comparing the boxplot distributions. There were 33 respondents who 
answered this item (3c-1) incorrectly and 32 explanations. Among these, 25 were 
primarily focused on the largest difference in centers (effects) with no regard or some 
confusion about the impact of the magnitude of the spreads. It seems clear that 
understanding variation within and variation between is not a precursor to a basic 
understanding of inference, rather, this understanding appears to be an indicator of a 
deeper (higher-order) understanding of inference. What is particularly interesting about 
this confusion is that there was no mention of NHST or p-values for this item. Maligning 
of NHST procedures seems to be a scapegoat for a conceptual confusion that may lie 
much deeper. This conceptual confusion is explored in a Ben-Zvi (2004) qualitative study 
that identifies seven stages of development toward noticing and differentiating within and 
between variation in a graph. 

 
Respondent explanations revealed a difficulty using confidence intervals to assess 

statistical significance (Logic-14: 2-5). Respondents must recognize that confidence 
intervals can be used to determine statistical significance by assessing whether a 
particular null hypothesis is included in the range of plausible parameter values 
(Cumming & Fidler, 2002). After the course some Posttest respondents (35%) remained 
confused about this. Among those who answered correctly, the written explanations 
reflect fairly clear reasoning. Among those who answered the item incorrectly, the two 
most prevalent explanations were either that confidence intervals simply do not assess 
statistical significance; that “we need to do a test for that” or that the center of the 
confidence interval should be centered at the null hypothesis, rather than the sample 
mean. The lack of clarity that the confidence interval is constructed around the sample 
mean to predict plausible values for the population mean may be exacerbated by a 
fundamental lack of differentiation of the sample mean statistic from the population mean 
parameter.  

Respondents’ Posttest explanations suggest that once they learn that p-values are used 
to determine statistical significance, they suppress their instinctive Pretest notions that 
confidence intervals can signify statistical significance as well. Students may have 
correctly learned that there is more information provided by the confidence interval than 
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one gets from the p-value alone. Rewording the item to reflect this fact may change the 
results. However, only one of the explanations seems to reflect that there was additional 
information provided by the confidence interval. What is more likely is that they have not 
connected the inter-relationship between confidence intervals and p-values well. The first 
definition for statistical significance in the textbook is in the context of a p-value being 
used to determine whether an association is statistically significant using a chi square test 
(Utts (2005), Chapters 10, 12 and 13). This first encounter seems to trump the later 
encounters with statistical significance and confidence intervals in Chapters 20-21. 
Chapter 20 “Estimating Proportions with Confidence” focuses on constructing a 
confidence interval for a proportion and provides examples and a case study that puts 
these confidence intervals in context. Chapter 21, “The Role of Confidence Intervals in 
Research”, focuses on constructing a confidence interval for a mean and for a difference 
between means. This chapter also highlights case studies that use these procedures. The 
order in which students learn inferential topics may be influencing the study results. 

 
5.4.  LIMITATIONS 
 

Although each RPASS item was intended to measure just one inference learning 
outcome, student explanations reveal that multiple misconceptions, misinterpretations or 
difficulties crop up in thinking through a specific problem. Some items are classified as a 
combination of correct concepts and misconceptions to reflect this overlap. In addition, 
the concepts listed in the taxonomy of inference learning outcomes are clearly not all-
inclusive. There are likely to be concepts and misconceptions related to inference that 
have not yet been documented in the existing literature. Thus, the RPASS-10 items are 
just a sample of items from the inference content domain. 

Respondent explanations illustrated how student thinking can diverge from what is 
expected. Even though an item was written to assess one particular concept on face value, 
student thinking may reveal how other difficulties or misconceptions come into play. 
Explanations also highlight that their reasoning contains both correct concepts and 
misconceptions at the same time. The analysis of student explanations reveals surprising 
sources of confusion that were not anticipated. For example, what appears to be a 
difficulty with estimating and shading the p-value was apparently due to an underlying 
difficulty with a one-sided hypothesis when given evidence in the opposite direction than 
hypothesized. 

Further, it should not be inferred that the misconceptions and difficulties that these 
particular respondents have suppressed would be the same for introductory students in 
other disciplines. Historically, students in the introductory course for the natural sciences 
scored statistically higher on the RPASS Pretests and Posttests compared to the social 
science course students, on average (e.g., Lane-Getaz, 2011; Lane-Getaz, 2013). Thus, 
one might expect different results from students with a stronger quantitative preparation. 
 

6. SUMMARY AND CONCLUSION 
 
The results of this study showed that during a one semester course most students 

achieved statistically significant gains for 20 of the 36 RPASS-10 items. Students were 
able to recognize basic concepts, differentiate between similar inferential concepts, 
interpret results, and evaluate validity—there were learning gains across the inference 
learning outcome taxonomy (Table 1). Few of the difficulties cited in the literature 
presented persistent challenges for these introductory students. In fact most of the gains 
can be attributed to suppressing known misconceptions. It is not reasonable to expect that 
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students will learn all the subtleties of NHST in a one-semester course; however, these 
students moved well beyond merely recognizing basic concepts and connecting related 
concepts. Given a strong foundation, respondents are better prepared to develop higher-
order thinking about inference. There is clear evidence of improved interpretations and 
evaluation of study design. In a subsequent course, should they choose to take one, 
respondents are better prepared to further improve their inferential thinking. As Krantz 
(1999) suggested, the problem with the use of inference procedures may not be with the 
tests, but with how they are taught. There is no need to toss out the proverbial baby with 
the bathwater. The teaching of inference has been improved and can continue to improve. 

 
6.1.  RECOMMENDATIONS FOR TEACHING 

 
Emphasize that the p-value is an integral part of a larger statistical process. 

Students were able to recognize basic concepts and differentiate between similar 
inferential concepts after taking this course. Greater exposure in subsequent courses 
would likely improve interpretations. However, for many of these social science students 
this course is their one and only statistics course. It seems important to intentionally 
engage these students in some high-order thinking about the entire statistical process: 
more interpretation, less computation, and more stress on evaluation of the validity of the 
study design. Utts (2005) does this fairly well in her textbook. To interpret a p-value 
properly, it is imperative to attend to the scope of inference (Ramsey & Shafer, 2002) and 
use of the proper inferential logic when interpreting results. Is the study design sufficient 
to justify using these inferential procedures and to draw the desired inferences?  Results 
suggest that a better emphasis is needed on checking if necessary conditions are 
sufficiently met. Although this is emphasized in our second courses in statistics, at this 
level students still need to recognize that condition checking is necessary before any 
conclusions can be drawn from these procedures. 

 
Emphasize the concept of the distribution under the null hypothesis. When 

researchers conduct a study, they typically only have results from a single sample and 
“you need to have something to compare to.” The null distribution provides that point of 
comparison, granted the null hypothesis is the worse case scenario; i.e., there is no effect. 
However, the null model does provide a point of comparison. In this course a week and a 
half of classroom lectures and two hands-on computer labs were devoted to 
randomization and simulation content, to reinforce the concept of the null distribution as 
a classroom experiment. Adding simulation may have contributed to the inference 
learning outcomes observed. The aggregate RPASS-10 results from this study compare 
favorably to RPASS Posttest Means (and SDs) observed in previous studies:  

RPASS-7:   23.2 (4.5) out of 34 items, n = 55 = 68% (Lane-Getaz, 2013),  
RPASS-8:   22.0 (5.3) out of 35 items, n = 19 = 66% (Lane-Getaz, 2011),  
RPASS-9:   23.0 (5.0) out of 37 items, n = 60 = 61% (Lane-Getaz, 2014),  
RPASS-10: 26.0 (4.3) out of 36 items, n = 69 = 72% (current study).  

Of course, no causal conclusion can be drawn. Nevertheless, the favorable, correlational 
link between the higher average score and the introduction of the randomization and 
simulation content to the course is encouraging.  

 
Emphasize variation within and between. Wild et al. (2011) describe a staged path 

to develop concepts of statistical inference in a first course. They describe methods of 
visualizing variation within and between groups. To help students visualize sampling 
variation over the course of repeated sampling, Wild and colleagues depict comparative 
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boxplots along with shadowy memories of the previous boxplots distribution from all the 
samples. Another interesting example offered by Wild and colleagues considers 
comparative boxplots all with the same spread but with different effects. The student 
must answer: “When can I make the call that [boxplot] B tends to give larger values than 
[boxplot] A?” Wild et al. suggest that the ability to make this type of comparison is one 
of the “big ideas of statistical inference” that provides a foundation for more formal 
statistical methods. They argue that this “informal” foundation to inference should 
(ideally) be developed in the K-12 curriculum. Students can deal with the concepts of 
variation within and between early and often by visually comparing side-by-side boxplots 
in grade school—with no mention of NHST, confidence intervals or p-values. This may 
be a developmental milestone toward preparing students to compare distributions using 
confidence intervals as suggested by Cumming and Finch (2005).  

 
Emphasize confidence intervals (CI) and two-sided tests to assess statistical 

significance The CI estimates population parameters or true effects, given the sample 
data observed. Because the CI provides a range of plausible values for the population 
parameter, it can also identify the exclusion of a particular null hypothesis value, 
signifying statistical significance. Beyond this, the CI provides complementary 
information that p-values cannot provide alone, namely, the bounds for the estimated 
population value or effect. NHST critics often recommend that NHST be replaced by the 
use of confidence intervals (e.g., Hubbard & Armstrong, 2006; Robinson & Wainer, 
2002). In actuality, the CI is an equivalent inferential procedure. “A point estimate, 
together with a t statistic for a particular hypothesized parameter value, can be readily 
converted to an (approximate) confidence interval, and vice-versa” (Krantz, 1999, p. 
1372). Even though understanding CIs is challenging for introductory students (see 
Chance & McGaughey, 2014), one simple curricular change might be routinely to have 
students note whether a given null hypothesis value is contained in the confidence 
interval or not. Ask students “what does the CI provide that the p-value does not provide 
alone?” Unlike the p-value, the confidence interval provides a measure of the effect in the 
units of the original problem.  

Furthermore, the problem that some respondents had sorting out one-sided versus 
two-sided tests, as was noted for item 1-3, may suggest that this detail requires greater 
emphasis. An existing class activity could be revised to focus on the relationship between 
one-sided and two-sided p-values. Another option might be to eliminate one-sided tests in 
the introductory course altogether by recommending two-sided tests in all cases with a 
confidence interval to determine the magnitude and direction of the effect. In the context 
of ongoing research, it seems reasonable to look not only for what the researcher might 
expect but also for something unusual that was not expected. Using confidence intervals 
appears to be a crucial step in the direction of emphasizing the importance of 
understanding effects (and in a second course, effect size.) Schneider (2013) noted that:  

Some researchers have called for a ban on NHST (e.g., Hunter, 1997). Censoring is 
not the way forward, but neither is status quo. What we need is statistical reforms as 
suggested for example by Wilkinson et al. (1999), Kline (2004) and Cumming 
(2012). Here emphasis is on parameter estimation, i.e., effect size estimation with 
confidence intervals. Important publication guidelines such as APA (2010) still 
sanction the use of NHST, albeit with strong recommendations to report measures of 
effect size and confidence intervals around them (e.g., APA, 2010, p. 34). (p. 60) 

If we teach it, that is what they will use. 
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Emphasize the differentiation of sample statistics from population parameters. 
Students were unclear whether p-values reflect a difference in the sample statistics or a 
true difference in the population parameters (also see Wild et al., 2010). Students did not 
understand that the p-value indicates whether the sample effect is big enough to claim a 
population effect. This may be a semantic problem more than a conceptual one. However, 
this confusion may be related to a difficulty differentiating samples from populations in 
general. Although students may be able to think of a sample as a subset of the population, 
they seem to have difficulty when these concepts have to be translated to specific means 
in a problem context. In the midst of teaching randomization and simulation methods, 
there is an opportunity to emphasize the distinction between the many samples, and the 
population value that is estimated at the center of the null distribution (or some 
hypothesized population parameter value). The sample mean, the evidence for the 
sample, is just one mean in the null distribution that can be concretely differentiated from 
the parameter value at the center of the null distribution. 
 
6.2.  DIRECTIONS FOR FUTURE RESEARCH 
 

The randomization and simulation module was inserted into this introductory course 
in lieu of the probability chapters with the goal of improving conceptual understanding of 
inference. Regretfully, the introduction of the randomization and simulation content 
occurred in the second half of the course (see Appendix C), after the students had already 
been exposed to the concept of the p-value to determine statistical significance using Chi-
square tests in Chapter 13 of Utts (2005). For future research the order of the topics will 
be altered to introduce randomization and simulation content at the beginning of the 
course. Early and frequent exposure to inference-related outcomes may further deepen 
students’ inferential understanding.  

With the earlier introduction of the randomization and simulation content, there will 
be an opportunity to place a greater emphasis on differentiating the concepts of samples 
and their statistics from the populations and their parameter values. The current study 
suggests that these concepts are elusive for students. Further research is needed to 
identify the crux of the confusion that students exhibited when differentiating sample 
statistics from population parameters. Routinely using confidence intervals to estimate 
the range of the population parameter or population effect may help shed light on this 
distinction as well.  

An intervention will be piloted to improve understanding of within variation and 
between variation. An existing randomization lab activity that compares two groups using 
side-by-side boxplots will be updated. Students will be asked to “predict statistical 
significance” before obtaining a p-value and confidence interval. Students will be 
prompted by questions to consider how much the boxes in the boxplots overlap and to 
what degree. Using boxplots to compare samples provides a developmental stepping-
stone to use confidence intervals to population effects (Cumming & Finch, 2005).  

There is also an existing activity that compares confidence intervals to signify 
statistical significance. This activity will be revisited to emphasize that a NHST can be 
used to determine significance. Furthermore, it will be emphasized that the confidence 
interval method provides this distinction of significance as well as an estimate for the 
effect. A series of questions will be written to prompt student thinking. Examining results 
and explanations from related RPASS items may provide insight into student thinking 
related to these inference learning outcomes. 

To assess curricular interventions the RPASS will need two modifications. An item 
needs to be added specifically to assess how a confidence interval is constructed, namely, 
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centered on the sample mean with some margin of error added and subtracted from either 
side. An additional item needs to assess whether there is general confusion of a sample 
mean from a population mean. Furthermore, explanations need to be requested for all 
items that were identified as difficult for these students as well as the new or modified 
items. 

Researchers interested in improving inference learning outcomes might consider: 
 Further research on teaching interventions to improve use of confidence intervals, 
 Development of assessments to assess the use and understanding of confidence 

intervals, 
 Research in the use and understanding of exclusively employing two-tailed tests in 

lieu of one-tailed tests. 
 
6.3.  CONCLUSION 
 

The decision by Trafimow and Marks (2015) to ban NHST procedures, p-values and 
confidence from the Journal of Basic and Applied Social Psychology sends a disturbing 
message to students that these procedures are of no use in applied social science research. 
Many of the criticisms of NHST procedures have been addressed in the literature (Cox et 
al., 1977; Hagen, 1997; Krantz, 1999; Mogie, 2004; among others). Furthermore, results 
of this study and others (Chance & McGaughey, 2014; Kalinowski, Fidler, & Cumming, 
2008; Lane-Getaz, 2013; Reaburn, 2014) suggest that with proper instruction 
introductory students can overturn many of the documented misconceptions and 
misinterpretations of NHST, p-values, and statistical significance. It is counterproductive 
to bemoan that p-values and statistical significance are a challenge for people to 
understand and use. With careful teaching, evaluation, and modifications to teaching, 
future social science researchers may be better prepared to evaluate if the procedures are 
being used properly and to interpret properly inferential results in the context of a broader 
investigative research agenda. Rumors of the p-value’s death are greatly exaggerated. 
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APPENDIX A. REASONING ABOUT P-VALUES & STATISTICAL 
SIGNIFICANCE SCALE (36 ITEM RPASS-10) 
  
Section 1: Defining P-values (3 items) 

Scenario 1: A research article reports that the mean number of minutes students at a 
particular university study each week is approximately 1000 minutes. The student council 
claims that students are spending much more time studying than this article reported. To 
test their claim, data from a random sample of 81 students is analyzed using a one-tailed 
test. The analysis produces a P-value of .048.  

1. Statement: The P-value of .048 is the probability that the students' random sample would have a 
mean as extreme or more extreme as what they had observed, if the results based on the research 
article (the null hypothesis) were indeed true.  

o True  
o False  

 
2. Statement: This P-value tells the students that the long run probability is 48 in 1000 of 
observing data at least as unusual as what was observed, if the null hypothesis were true.  

o True  
o False  
Please explain your reasoning in the space below:  

  
3. Statement: Assume a student had conducted a two-tailed test instead of a one-tailed test on the 
same data, how would the P-value (.048) have changed?  

o The two-tailed P-value would be smaller (i.e., the P-value would be .024).  
o The two-tailed P-value be the same as the one-tailed (i.e., the P-value would be .048).  
o The two-tailed P-value would be larger than the one-tailed (i.e., the P-value would be 

.096). 
Please explain your reasoning in the space below:  

2014 
: Reasoning about P-values & Statistical Significance (36 item RPASS-10)  
Section 2: Using Tests of Statistical Significance (5 items)  
 
Scenario 2: The district administrators of an experimental program are interested in 
knowing if the program had improved the reading readiness of first graders. Historically, 
before implementing the new program, the mean score for Reading Readiness for all first 
graders was 100. A large random sample of current first graders who attended the new 
preschool program had a mean Reading Readiness score of 102. Assess the following 
actions and interpretations of district researchers.  
 
1. Action: The district researchers found how likely a sample mean of 102 or higher would be in 
the sampling distribution of mean scores, assuming that the population mean really is 100.  

o Valid Action  
o Invalid Action  
Please explain your reasoning on this item:  

 
2. Interpretation: In their presentation to the district administration, the researchers explained that 
when comparing the observed results to the general population, the stronger the evidence that the 
reading readiness program had an effect, the smaller the P-value that would be obtained.  

o Valid Interpretation  
o Invalid Interpretation  
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APPENDIX A. CONTINUED… REASONING ABOUT P-VALUES & 
STATISTICAL SIGNIFICANCE SCALE (36 ITEM RPASS-10) 
 
Section 2 continued… 

3. Interpretation: The P-value should be interpreted as the conditional probability of having 
obtained a mean Reading Readiness score of 102 or higher, conditioned on the population mean 
being 100.  

o Valid Interpretation  
o Invalid Interpretation  
Please explain your reasoning in the space below:  

 
4. Interpretation: After checking the conditions necessary for inference, the district researchers 
found they had statistically significant results. They interpreted the small P-value to mean that the 
cause of the results obtained was clearly due to chance.  

o Valid Interpretation  
o Invalid Interpretation  

 
5. Action: Conditions for inference were acceptable, so the district researcher constructed a 95% 
confidence interval (centered at 102) to estimate the range of plausible population means that 
could have produced the observed results. The researcher evaluated whether the interval captured 
the hypothesized mean of 100 (or if the entire range of values was greater or less than 100). This 
approach assesses statistical significance (much like a two-tailed test at the .05 level or a one-
tailed test at the .025 level).  

o Valid Action  
o Invalid Action  
Please explain your reasoning in the space below:  

 
 (36 itemRPASS-10)  
Section 3: Interpreting Results (9 items)  

Scenario 3a: A researcher conducts a two-sample test. He compares the mean hair 
growth results for one class section of students who agreed to try his treatment to a 
second class section's mean who do not use the treatment. He hopes to show that there is 
a statistically significant difference between the two group means. How should this 
researcher interpret results from this two-sample test?  
 
1. Interpretation: If the class section that had the treatment has more hair growth compared to the 
no treatment group and the P-value is small, the researcher interprets the P-value to mean that all 
people that use the product will have more hair growth than people who do not.  

o Valid Interpretation  
o Invalid Interpretation  
Please explain your reasoning in the space below:  

 
2. Interpretation: Assume the conditions for inference were met. The researcher interprets the P-
value as an indicator of how rare (or unusual) it would be to obtain the observed results or 
something more extreme, if the hair treatment had no effect.  

o Valid Interpretation  
o Invalid Interpretation  

 
3. Interpretation: Assume the conditions for inference were met and the researcher obtains a large 
P-value of .72. How should this be interpreted?  

o There is a calculation error because  
o P-values are not supposed to be this large.  
o The sample data did not support the research hypothesis.  
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APPENDIX A. CONTINUED… REASONING ABOUT P-VALUES & 
STATISTICAL SIGNIFICANCE SCALE (36 ITEM RPASS-10) 
 
Section 3 continued...  
 
Scenario 3b. Radium-226 is a naturally occurring radioactive gas. For public safety, the 
Environmental Protection Agency (EPA) has set the maximum exposure level of 
Radium-226 at a mean of 4 pCi/L (picocuries per liter). Student researchers at a southern 
Florida university expected to show that Radium- 226 levels were less than 4 pCi/L. 
However, these student researchers collected 32 soil specimens with a mean Radium-226 
measured at 4.1 pCi/L. Students checked the necessary conditions and conducted a 
hypothesis test at the .05 level. Estimate the P-value given the sketch below of the 
distribution of means and the observed mean of 4.1 pCi/L.  
 
 

 
 
 

1. Interpretation: Based on the estimated P-value, the students’ sample mean was statistically 
significant.  

o Valid Interpretation  
o Invalid Interpretation  
o Other (please specify)  

 
 
2. Interpretation: The estimated P-value for the students’ sample mean is greater than .05.  

o Valid Interpretation  
o Invalid Interpretation  
Please explain your reasoning in the space below:  

 
  
3. Interpretation: The estimated P-value for the students’ sample can be illustrated by shading the 
area to the left of the observed sample mean of 4.1 pCi/L in the sampling distribution of means 
represented above.  

o Valid Statement  
o Invalid Statement  
Please explain your reasoning on this item:  

 
 
4. Interpretation: The estimated P-value for the students’ sample is actually greater than .5.  

o Valid Interpretation  
o Invalid Interpretation  
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APPENDIX A. CONTINUED… REASONING ABOUT P-VALUES & 
STATISTICAL SIGNIFICANCE SCALE (36 ITEM RPASS-10) 
 
Section 3 continued...  
 
Scenario 3c: A group of 100 athletes are preparing to run a race. They are all pretty 
similar in their height, weight, and strength. They are randomly assigned to one of two 
groups. One group gets an additional weight-training program. The other group gets the 
regular training program without weights. All the students from both groups run the race 
and their times are recorded. The data are used to compare the effectiveness of the two 
training programs.  
 
Presented below are some possible graphs that show boxplots for different scenarios, 
where the running times are compared for the students in the two different training 
programs (one with weight training and one with standard training).  
 
Examine each pair of graphs and think about whether or not the sample data would lead 
you to believe that the difference in running times is caused by these two different 
training programs. (Assume that everything else was the same for the students and this 
was a true, well-designed experiment.)  
 

 
 

1. Which set of boxplots provides the MOST convincing evidence that the difference between the 
two groups of athletes is due to the training program.  

o Boxplots A  
o Boxplots B  
o Boxplots C  
o Boxplots D  
Please explain your reasoning on this item:  

 
 
2. Which set of boxplots provides the LEAST convincing evidence that the difference between the 
two groups of athletes is due to the training program.  

o Boxplots A  
o Boxplots B  
o Boxplots C  
o Boxplots D  
Please explain your reasoning on this item:  
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APPENDIX A. CONTINUED… REASONING ABOUT P-VALUES & 
STATISTICAL SIGNIFICANCE SCALE (36 ITEM RPASS-10) 
 
Section 4: Drawing Conclusions about Statistical Significance (9 items)  
 
Scenario 4a: A researcher believes that an SAT preparation course will improve SAT 
scores. The researcher invites a random sample of students to take the online prep course, 
free of charge. All of these students agree to participate. The researcher then conducts a 
statistical significance test (.05 significance level) to compare the mean SAT score of this 
random sample of students who took the review course to a historical average (500). She 
hopes that the students have a higher mean score than the historical average. The 
researcher finds a P-value for her sample of .03.  
 
1. Conclusion: Recall that the significance level is .05 and the P-value is .03.  

o The .05 suggests the mean prep course score is higher than 500.  
o The .03 suggests the mean prep course score is higher than 500.  
o Since .03 is smaller than .05, the evidence suggests the mean prep course score is not 

statistically significantly higher than 500.  
 
2. Conclusion: If there were an even greater difference between the mean scores of students who 
took the SAT preparation course and the historical average, we would obtain an even smaller P-
value than .03.  

o Valid Conclusion  
o Invalid Conclusion  

 
3. Conclusion: A causal conclusion can be drawn about the effectiveness of the review course 
based on a P-value this small, regardless of whether this was a randomized comparative 
experiment or an observational study.  

o True  
o False  
Please explain your reasoning in the space below:  

  
2014: Reasoning about P-values & Statistical Significance (36 item RPASS-10)  
Scenario 4b: Researchers hypothesized that female students suffering from bulimia 
would have a greater fear of a negative evaluation by others than female students who 
had more normal eating habits. To investigate this theory, two samples of female subjects 
were recruited to participate in a psychological study. One sample consisted of 11 
"bulimic" females; the other sample of 14 female subjects had "normal" eating habits. 
The response variable in this study was based on a questionnaire taken by each subject 
that measured her “fear of negative evaluation” (FNE). The mean difference in FNE 
scores between the "bulimic" group and the "normal" group was 3.68 points.  
 
A statistics class was asked to assess if this difference of 3.68 was statistically significant 
(at the .05 level)? The statistics students decided to randomly reassign the observed FNE 
scores to two groups (Bulimic and Normal) 100 times, as if there were no difference in 
the two groups. For every random re-assignment, the statistics students computed 
differences between the mean FNE scores (mean Bulimic FNE score – mean Normal 
FNE score). They plotted these 100 mean differences in a dot plot to assess how much the 
mean difference would vary, just by chance. The distribution of mean differences appears 
below. Using this distribution, students estimated a P-value and assessed the statistical 
significance of the observed mean difference of 3.68.  
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APPENDIX A. CONTINUED… REASONING ABOUT P-VALUES & 
STATISTICAL SIGNIFICANCE SCALE (36 ITEM RPASS-10) 
 
Section 4 continued… 
 
 

 

 
 
 

1. Conclusion: One of the statistics students explained to the group that the appropriate P-value 
should be 7/100 or .07 for a one-tailed hypothesis. He concluded that this P-value is sufficient 
evidence to reject at the .10 significance level but insufficient to reject at the .05 level set for this 
study.  

o Valid Conclusion  
o Invalid Conclusion  
Please explain your reasoning in the space below:  

 
 
2. Action: Another student in the group counted the mean differences in the above distribution as 
large or larger than +3.68 and estimated the P-value to be 13/100 or .13.  

o Valid Action  
o Invalid Action  
Please explain your reasoning on this item:  

 
 
3. Conclusion: Given the observed difference in mean FNE scores of 3.68 in this study, the 
statistics students rejected the hypothesis that, on average, there was no difference in FNE scores 
between the two groups.  

o Valid Conclusion  
o Invalid Conclusion  

 
 
4. Conclusion: Assuming the statistics students failed to reject the null hypothesis, the study may 
not have had a large enough sample size to detect a statistically significant difference.  

o Valid Conclusion  
o Invalid Conclusion  
 
 

5. Conclusion: Larger sample sizes (e.g., 25 per group) would probably produce results that were 
statistically significant, regardless of whether they were practically significant.  

o Valid Conclusion  
o Invalid Conclusion  
Please explain your reasoning in the space below:  

 
2014: Reasoning about P-values & Statistical Significance (36 item RPASS-10)  
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APPENDIX A. CONTINUED… REASONING ABOUT P-VALUES & 
STATISTICAL SIGNIFICANCE SCALE (36 ITEM RPASS-10) 
 
Section 5: Tying P-values back to Hypotheses (4 items)  
 
Scenario 5: Suppose you have a new driving school curriculum which you suspect may 
alter performance on passing the written exam portion of the driver's test. You compare 
the mean scores of subjects who were randomly assigned to control or treatment groups 
(20 subjects in each group). The treatment group used the new curriculum. The control 
group did not. You use a 2-sample test of significance and obtain a P-value of 0.01.  
 
1. Statement: The small P-value of .01 is the probability that the null hypothesis (that there is no 
difference between the two population means) is false.  

o True Statement  
o False Statement  
Please explain your reasoning in the space below:  

 
 
2. Statement: The probability that the experimental (i.e., the alternative) hypothesis is true is .01.  

o True Statement  
o False Statement  

 
 
3. Statement: Assume you had obtained an even smaller P-value (than .01). A smaller P-value...  

o is stronger evidence of a difference or effect of the new driving school curriculum.  
o is weaker evidence of a difference or effect of the new driving school curriculum.  
o suggests no change in the difference or effect of the new driving school curriculum.  

 
 
4. Statement: The P-value of .01 reflects a mean difference in scores between the treatment and 
control groups being studied but does not suggest that there is a true mean difference in the 
broader populations.  

o True Statement  
o False Statement  
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APPENDIX A. CONTINUED… REASONING ABOUT P-VALUES & 
STATISTICAL SIGNIFICANCE SCALE (36 ITEM RPASS-10) 
 
Section 6. The remaining questions are multiple-choice. Please select the best option 
among the choices provided.  
 
1. A research article gives a P-value of .001 in the analysis section. Which definition of a P-value 
is the most appropriate? The P-value is...  

o the probability that the observed outcome will occur again.  
o the probability of observing an outcome as extreme or more extreme than the one 

observed if the null hypothesis is true.  
o the value that an observed outcome must reach in order to be considered significant under 

the null hypothesis.  
o the probability that the null hypothesis is true.  
Please explain your reasoning in the space below:  
 
 

2. If a researcher was hoping to show that the results of an experiment were statistically significant 
they would prefer:  

o a large P-value  
o a small P-value  
o P-values are not related to statistical significance  

 
 
3. It is reported that scores on a particular test of historical trivia given to high school students are 
approximately normally distributed with a mean of 85. Mrs. Rose believes that her 5 classes of 
high school seniors will score significantly better than the national average on this test. At the end 
of the semester, Mrs. Rose administers the historical trivia test to her students. The students score 
an average of 89 on this test. The appropriate statistical test was conducted and Mrs. Rose finds 
the P-value is .0025. Assuming this were a random sample, which of the following is the best 
interpretation of the P-value?  

o A P-value of .0025 provides strong evidence that, on average, Mrs. Rose's class 
outperformed high school students across the nation.  

o A P-value of .0025 indicates that there is a very small chance that, on average, Mrs. 
Rose's class outperformed high school students across the nation.  

o A P-value of .0025 provides evidence that Mrs. Rose is an exceptional teacher who was 
able to prepare her students well, on average, for this national test.  

o None of the above  
 
 
4. A researcher conducts an experiment on human memory and recruits 15 people to participate in 
her study. She performs the experiment and analyzes the results. She obtains a P-value of .17. 
Which of the following is a reasonable interpretation of her results?  

o This proves that her experimental treatment has no effect on memory.  
o There could be a treatment effect, but the sample size was too small to detect it.  
o She should reject the null hypothesis.  
o There is evidence of a small effect on memory by her experimental treatment.  
Please explain your reasoning in the space below:  
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APPENDIX A. CONTINUED… REASONING ABOUT P-VALUES & 
STATISTICAL SIGNIFICANCE SCALE (36 ITEM RPASS-10) 
 
Section 6 continued… 
 
5. A newspaper article claims that the average age for people who receive food stamps is 40 years. 
You believe that the average age is less than that. You take a random sample of 100 people who 
receive food stamps, and find their average age to be 39.2 years. You find that this is significantly 
lower than the age of 40 stated in the article (p < .05). What would be an appropriate interpretation 
of this result?  

o The statistically significant result indicates that the majority of people who receive food 
stamps is younger than 40.  

o Although the result is statistically significant, the difference in age is not of practical 
importance. 

o An error must have been made.  
o This difference is too small to be statistically significant.  

 
 
6. A newspaper article stated that the US Supreme Court received 812 letters from around the 
country on the subject of whether to ban cameras from the courtroom. Of these 812 letters, 800 
expressed the opinion that cameras should be banned. A statistics student was going to use this 
sample information to conduct a test of significance of whether more than 95% of all American 
adults feel that cameras should be banned from the courtroom. What would you tell this student?  

o This is a large enough sample to provide an accurate estimate of the American public's 
opinion on the issue.  

o The necessary conditions for a test of significance are not satisfied, so no statistical test 
should be performed.  

o With such a large number of people favoring the notion that cameras be banned, there is 
no need for a statistical test.  

 
 
7. Food inspectors inspect samples of food products to see if they are safe. This can be thought of 
as a hypothesis test, where: Ho: the food is safe (in the population), and Ha: the food is not safe (in 
the population). Identify whether the following statement is a Type I (Alpha), a Type II (Beta) 
error, or neither.  
 
Statement: "The inspector says the food is not safe but it actually is safe."  

o The inspector rejects the null hypothesis when he shouldn’t have (i.e., a Type I or alpha 
error)  

o The inspector fails to reject the null hypothesis when he should have (i.e., a Type II or beta 
error)  

o Not an error  
Please explain your reasoning in the space below:  
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APPENDIX B. RPASS-10 ITEMS LISTED BY POSTTEST PROPORTION 
CORRECT WITHIN TAXONOMY OF INFERENCE LEARNING OUTCOME 

 
Table B. 36 RPASS-10 scenario and item numbers ordered by Posttest proportion correct 

within inference learning outcome; if correct concept (C) or misconception (M) was 
assessed, Pretest proportion correct and Learning Gain by item, N = 69 

 

RPASS Inference learning outcome category,  
description of learning outcome, and references C/M 

Proportion 
correct  

Item Posttest Pretest Gain 
2-1 Basic-1 Recognize a small p-value measures 

rareness or unusualness, when Ho is true. 
(Carver, 1978; Fisher, 1929; Saldanha & 
Thompson, 2006; Schneider, 2015) 

C .93 .52 .41a 

1-1 Basic-1 As above C .84 .59 .25a 
3a-2 Basic-1 As above C .78 .74b  .04c 
6-1 Basic-1 As above C/M .74 .41 .33a 
1-2 Basic-1 As above C .71 .59 .12c 
6-2 Basic-2 Recognize a small p-value is indicative of 

statistical significance. (Lane-Getaz, 2013) 
C/M .93 .61 .32a 

2-3 Basic-3 Recognize that a p-value is conditioned on 
the null hypothesis being true. (Falk, 1986; 
Ancker, 2006) 

C/M .77 .71b  .06c 

4b-4 Basic-4 Recognize that the p-value is indirectly 
related to sample size. (Wilkerson & Olson, 
1997) 

C/M .97 .93b .04c 

6-4 Basic-4 As above C/M .75 .61 .14c 
4b-1 Basic-5 Recognize that the magnitude of the p-value 

depends on the direction of the alternative 
hypothesis. (Lane-Getaz, 2013) 

C/M .77 .57 .20a 

3b-2 Basic-5 As above M .74 .52 .22a 
4b-2 Basic-5 As above C/M .72 .58 .14c 
1-3 Basic-5 As above C/M .62d .36 .26a 
3a-3 Basic-6 Recognize that the p-value may not be small; 

large p-values indicate the sample obtained 
did not support the research hypothesis. 
(Lane-Getaz, 2013; Williams, 1999) 

M .94 .77b .17a 

3b-1 Basic-6 As above M .74 .28 .46a 
4b-3 Basic-6 As above C .49d .49 .00c 
3b-3 Basic-6 As above M .41d .58 -.17e 
3b-4 Basic-6 As above C/M .33d .35 -.02c 
4a-1 Connected-7 Differentiate p-values from significance 

level (). (Hubbard & Bayarri, 2003) 
M .87 .39 .48a 

6-7 Connected-8 Differentiate between concepts of Type I () 
error & Type II () error. (Schneider, 2013)  

C/M .77 .57 .20a 

6-5 Connected-9 Differentiate statistical significance from 
practical importance. (Tyler, 1931; Gliner, et 
al., 2002)  

C/M .77 .71b .06c 

4b-5 Connected-9 As above M .72 .70b .02c 
Note. aOne of 20 items with a significant learning gain. bOne of seven items with pretest 
proportion p1 > 70%. cOne of 14 items with no significant learning gain or loss. dOne of 11 items 
with posttest proportion p2 < 70%. eOne of two items with a significant learning loss.  
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APPENDIX B. CONTINUED… RPASS-10 ITEMS WITHIN THE TAXONOMY 
 

Table B continued… 36 RPASS-10 scenario and item numbers ordered by Posttest 
proportion within inference learning outcome; if correct concept (C) or misconception 

(M) was assessed, Pretest proportion correct and Learning Gain by item, N = 69 
 

RPASS Inference learning outcome category,  
description of learning outcome, and references C/M 

Proportion 
correct  

Item Posttest Pretest   Gain 
2-2 Connected-10 Differentiate strength of evidence (p-

values) from the size of an effect. (Gliner, 
Leech, & Morgan, 2002) 

C .96 .65  .31a 

5-3 Connected-10 As above C .90 .46  .44a 
4a-2 Connected-10 As above C .90 .57  .33a 
6-3 Connected-10 As above C/M .83 .43  .40a 
5-4 Connected-11 Differentiate sample statistics from 

population parameters.(Lane-Getaz, 2013; 
Mittag & Thompson, 2000) 

M  .33d .36 -.03c 

3c-1 Connected-13 Differentiate variation within (spreads) 
from variation between (effects). 
(Reading & Reed, 2010; Zieffler, et al., 
2008; Wild et al., 2011)  

C .49d .43     .06c 

3c-2 Connected-13 As above C .49d .43      .06c 
2-5 Logic-14 Interpret confidence intervals to signify 

statistical significance as a complement 
to—or in lieu of—NHST and p-values. 
(Lane-Getaz, 2013; Capraro, 2004; 
Cumming & Fidler, 2002) 

C .65d .83b    -.17e 

3a-1 Logic-16 Suppress the misinterpretation that the p-
value provides a deterministic proof, the 
illusion of contrapositive proof by 
contradiction. (Batanero, 2000; Falk & 
Greenbaum, 1995; Oakes, 1986) 

M .70 .52     .17a 

2-4 Logic-17 Suppress the misinterpretation that the p-
value is the probability that the research 
results were “due to chance;” aka odds 
against chance fantasy. (Carver, 1978; 
Daniel, 1998)  

M .87 .64     .23a 

5-1 Logic-18 Suppress the misinterpretation of the p-
value as the probability that the null 
hypothesis is false. (Oakes, 1986) 

M .55d .35  .20a 

5-2 Logic-18 Suppress the misinterpretation of the p-
value as the probability that the 
alternative hypothesis is true. (Oakes, 
1986) 

M .67d .42      .25a 

6-6 Validity-19 Evaluate how well the necessary 
conditions for inference were met. (Hahn 
& Meeker, 1993) 

C/M .62d .55      .07c 

4a-3 Validity-20 Evaluate the validity of inferences to be 
drawn based on how randomization was 
used in the study design aka scope of 
inference. (Lane-Getaz, 2013; Ramsey & 
Shafer, 2002; Robinson et al., 2007) 

M .88 .58      .30a 

Note. aOne of 20 items with a significant learning gain. bOne of seven items with pretest 
proportion p1 > 70%. cOne of 14 items with no significant learning gain or loss. dOne of 11 items 
with posttest proportion p2 < 70%. eOne of two items with a significant learning loss.  
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APPENDIX C. SPRING 2014 INTRODUCTORY STATISTICS COURSE FOR 
STUDENTS IN THE SOCIAL SCIENCES: LECTURE AND LAB TOPICS 

 
Table C. Spring 2014 Introductory statistics course topics for social science students 

 
Chaptera Date Lecture topics Lab topics by week 

1 2/11 Course Introduction and Overview  
1-2 2/13 Benefits & Risks of Using Statistics  

Reading the News 
1. RPASS-10 Pretest  

3 2/18 Measurements, Mistakes & Misunderstandings  
4 2/20 How to Get a Good Sample 2.  Canceled (Snow)  

5-6 2/25 Experiments and Observational Studies 
Getting the Big Picture 

 

7-8 2/27 Summarize and Display Measurement Data; 
Bell-Shaped Curves; Moodle Quiz #1 

3.  SPSS: Creating 
tables and graphs for 
categorical datac 

9 3/4 Plots, Graphs, and Pictures  
10-11 3/6 Relationships Between Measurement Variables;  

Relationships can be Deceiving 
4.  SPSS: Creating 

summaries & graphs 
for quantitative datac 

12 3/11 Relationships between Categorical Variables  
13 3/13 Statistical Significance for 2 X 2 Tables;  

Chi Square 
5.  Kids’ Feet case 

study: categorical & 
quantitative datac 

n/a 3/18 Moodle Quiz #2; Wrap Up and Exam Review  
n/a 3/20 Midterm Exam, Thursday 3/20 6.  Randomization test:  

Dolphin Therapy  
n/a  Spring Break: March 22-30  

RM-1b 4/1 Introduction to Simulation & Randomization  
RM-2b 

4/3 Simulation & Randomization continued 
7. “Second Chance” 

Midterm (online) 
RM-3b 
18.4 

4/8 Wrap up Randomization 
Positive Predictive Value 

 

19 4/10 The Diversity of Samples from the Same 
Population 

8.  Randomization test:  
Fish Oil Diet 

19-20 4/15 Estimating Proportions with Confidence  

22 4/17 Rejecting Chance—Testing Hypotheses in 
Research 

9.   Project Overview  

21 4/22 Role of Confidence Intervals in Research 
Hypothesis Testing—Examples and Case Studies 

 

 4/24 Role of CIs and HTs in Research continued… 
Moodle Quiz #3 

10.  Project: Exploratory 
Data Analysis  

23 4/29 t-tests and ANOVA in SPSS  
24 5/1 Paired t-test and inference for Regression 11. Project Meetings 

n/a 5/6 Project Presentations: Group I  
n/a 5/8 Project Presentations: Group II 

Moodle Quiz #4 
12. RPASS-10 Posttest  

n/a 5/13 Project Presentations: Group III  
Note. aSeeing through Statistics, (Utts, 2005). Lecture podcasts were posted on Moodle. bOne of 
three in-class Randomization Module lectures (RM-1: Categorical Response Randomization test, 
RM-2: Quantitative Response Randomization test and RM-3: Randomization Summary). cFive 
minute screen videos were posted to model “how-to” solutions for each of the SPSS-based labs. 


