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ABSTRACT 
 

Grade 6 (modal age 11) students invented and revised models of the variability 
generated as each measured the perimeter of a table in their classroom. To construct 
models, students represented variability as a linear composite of true measure (signal) and 
multiple sources of random error. Students revised models by developing sampling 
distributions of model-generated statistics to judge model fit and validity. After instruction, 
interviews with 12 students were conducted to learn how they conceived of relations among 
chance, modeling, and inference. Most students’ inferences were guided by a hierarchical 
image of sample, a perspective constituted through their understandings of modeling 
variability as signal and noise.  
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1. INTRODUCTION 
 

1.1.  THE ROLE OF MODELING IN STATISTICAL INFERENCE 
 
One of the prominent agendas of statistics education is to support students’ understanding 

of how inference can be made in light of variability (Garfield & Ben-Zvi, 2008). Formal 
approaches to inference emphasize modeling the outcomes of random processes as functions 
that generate probability densities and that regulate inference. However, people’s grasp of the 
logic of this approach typically develops over a considerable period of time (Pfannkuch & 
Wild, 2000). One challenge to accomplishing understanding is that the logic of hypothesis 
testing is counterfactual. Another is that sustaining this logic requires maintaining a 
hierarchical image of sample in which samples are composed of visible cases that vary, and in 
which samples, in turn, are simultaneously members of an imagined collection that varies (Ben-
Zvi, Bakker & Makar, 2015; Saldanha & Thompson, 2002, 2014; Thompson, Liu & Saldanha, 
2007). A third challenge is that inference relies on intimate knowledge of the problem context, 
which is required to ground sense-making (Makar, Bakker, & Ben-Zvi, 2011). In light of these 
significant challenges to the formal foundations of inference, it is worthwhile to begin 
supporting students’ initiation to these ideas via informal inference, an approach that 
emphasizes going beyond particular samples to make generalizations that explicitly recognize 
the uncertainty of the generalization. Uncertainty is often signaled via linguistic hedges such 
as “may,” or references to a neighborhood of values (Makar & Rubin, 2009; Pfannkuch, 2011; 
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Pratt & Ainley, 2008). The informal inference approach clarifies for students the foundational 
role of inference in statistics without insisting on formalisms that may be poorly understood 
and that take considerable time to develop.  

This research explores a way to expand young students’ (age 11) articulations of informal 
inference by engaging them in an approximation to the professional practice of participating in 
a “dialog between models and data” (Cobb & Moore, 1997, p. 810). As described momentarily, 
the conjecture that motivates this study is that student invention and revision of models of 
variability can be rooted in their participation in accessible processes involving signal and noise 
(Konold & Harradine, 2014; Konold & Pollatsek, 2002; Lehrer, Kim, & Schauble, 2007). It is 
expected that these experiences will provide pathways for developing a hierarchical image of 
sample that, in turn, can guide informal inference.  

A hierarchical image of sample integrates sample variability and sampling variability 
(Rubin, Bruce & Tenney, 1990). For example, students who observe a sample statistic with a 
hierarchical image in mind will likely make inferences about that statistic based on their 
anticipations of its sampling variability. In formal approaches, this anticipation is based on 
probability densities and functions. In contrast, the approach taken here was to engage students 
in inventing chance models of the variability that resulted from a repeated measure process in 
which they were the agents. Ideally, repeated measures can be modeled as a composition of 
fixed signal, the true measure, and variation arising from random error. Such models are 
cognitive tools that could support student reasoning about commonalities, the same signal, and 
differences, random error, from (simulated) sample to sample. Modeling this composition of 
signal and noise may help students envision sampling variability as sensible and even 
inevitable. By revising models, students also have means to observe which correspondences 
between components of the model and sampling variability seem to matter. If students believe 
that their model is a valid representation of the process, then the empirical sample constituted 
by their actual measurements can be seen as a prospective member of the potentially infinite 
collection of samples generated by the model. Hence, modeling is a potential pathway for 
envisioning the hierarchy of variable cases within a sample and an imagined collection of 
samples that vary. If students also have a means to augment their vision, such as a sampling 
distribution that makes explicit how a statistic tends to vary from sample to sample, then they 
have the semiotic means to expand the reach of informal inference to include probabilistic 
judgment.  

To explore the potential of this form of modeling for expanding students’ conceptions of 
sample and consequently, of informal inference, we conducted an eight-week design study in 
a sixth-grade classroom (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). During the latter 
half of the design study, students invented and revised models, primarily those representing the 
variability of processes involving signal and noise. They used their models to make inferences 
about claims of change in process. At the completion of instruction, a sample of participating 
students responded to a three scenarios posed in a flexible interview. Student conceptions of, 
and the relations among, sample variability, sampling variability, and modeling were elicited, 
and we further attempted to learn how students understood the role of each in informal 
inference. Accordingly, research questions included: 

(1) How did students conceive of sample distribution and the role of sample size in 
estimating sample statistics?  
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(2) For a given sampling distribution, how did students conceive of cases, interpret 
statistics of center and variability, and predict and explain the influence of sample 
size on statistics of center and variability? 

(3) Working with familiar contexts of signal and noise, how did students understand 
the operation of models? What criteria did they generate to decide about “good” 
models? Could they change model parameters to generate hypothetically different 
distributions?  

(4) What role did models and sampling distributions of model statistics play in guiding 
students’ inferences about new claims and associated statistics? 

   
1.2 INSTRUCTION TO SUPPORT MODEL-BASED INFERENCE 
 

The entire instructional sequence, including teacher-generated elaborations of lessons and 
supporting materials, is available (at modelingdata.org), so the description of the design and 
rationale of instruction is described here sparsely. The aim is to give the reader a sense of the 
curricular trajectory in which students participated; the research is directed at student reasoning 
post-instruction. However, student experiences were not simply a matter of posing curricular 
tasks. The classroom teacher had participated previously in related research aimed at describing 
and assessing student thinking about statistics and data during the late elementary/early middle 
school years (Lehrer, Kim, Ayers, & Wilson, 2014). 

 
Making sense of sample variability The initial phase of instruction supported students in 

developing an image of a sample as arising from the repetition of a process (Saldanha & 
Thompson, 2002). Components of processes involving signal and noise are usually more 
visible to young students than those involving natural variation (Konold & Lehrer, 2008; 
Lehrer & Schauble, 2007). Every student used a 15-cm ruler to measure the perimeter of the 
classroom’s “lost-and-found” table. Therefore, students had a hand in the data generating 
process, often an essential underpinning for interpreting data (McClain & Cobb, 2001; Lehrer 
& Schauble, 2002). Students speculated about sources of variability in their measures and 
considered what would happen if other classes also measured the same table with the same 
tool. The intention was to help students think of measurement as a process and to begin to 
identify plausible causes of variability, an important resource for learning to think statistically 
(Biehler, 1999; Prodromou & Pratt, 2006; Wild, 2006).  

Working with the classroom batch of data, pairs of students used paper and markers to 
display the data in ways that would “help someone else see a trend or pattern that you noticed.” 
Following this data display invention phase, whole-class critique focused on detecting what 
different displays “show and hide.” The goal was to help students understand that the “shape 
of variability” arises from choices made by designers, and these choices are consequential for 
what one can readily “see” about variability (Lehrer et al., 2007; Lehrer & Schauble, 2004). 
Several student displays made visible a modal or center clump (Bakker, 2004), and the teacher 
highlighted these clumps by asking students to account for the bell-like shape. Here, again, the 
teacher sought to anchor variability to characteristics of process, including: signal, “what the 
perimeter of the table is,” and noise, “different kinds of mistakes.”  

Students concluded their exploration of sample variability by inventing statistics to 
estimate both the “real perimeter” and “precision, or how much our measurements tended to 
agree.” Collectively, students reviewed the inventions proposed by the class and considered 
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what the different statistics attended to about the sample. These conversations were important 
in fostering a view of a statistic as a measure, rather than merely as a computation (Lehrer & 
Kim, 2009; Lehrer, Kim, & Jones, 2011). Next, this cycle of constructing, visualizing, and 
measuring variability was extended to other accessible contexts that were characterized by 
visible sources of variability (noise) and stability (signal) and in which students could 
participate in firsthand generation of data. For example, students compared the consistency of 
products (e.g., “fruit sticks”) they generated with different production processes—see 
modelingdata.org, Unit 4.  

Extending variability to include chance Exploration of variability was next extended to 
include the role of chance. First, students investigated the behavior of simple chance devices 
with TinkerPlots (Konold, 2007; Konold & Miller, 2011). These investigations prompted 
students to consider relations between the structure of a chance device (such as the percent area 
of red in a two-color spinner) and the long-run relative frequencies or proportions of targeted 
events. A second investigation focused on sample-to-sample variability, initially noticed by 
students during their investigations of sample variability. Investigations included collecting 
300 sample statistics for small (n=10 repetitions of the spinner), medium (n= 100), and large 
(n =1000) samples consisting of outcomes of 2-color spinners. Students explained what the 
median and IQR of the sampling distribution measured and discussed why the values of these 
statistics were either stable (median) or changing (IQR). These activities focused students on 
the relations among sample, sample statistic, sampling distribution, and statistics of sampling 
distributions. 
  

Modeling variability of measurement After these excursions into chance and sampling, 
students again re-considered their measurement data, recalling their best estimate of the 
perimeter of the table and identifying sources of error in their measures. At this point, modeling 
was introduced as a process for explaining how the outcomes observed in the sample 
distribution were generated, as well as how other outcomes (measurements) like them might 
be generated. To initiate modeling, the teacher asked students to use TinkerPlots to create a 
model of “perfect measurement.” This instruction was intended to draw students’ attention to 
the fit between a model’s simulated outcomes and the empirical sample students had previously 
constructed. When students observed the lack of fit between model and data, they began to list 
potential sources of error, such as inadvertent, random slips made when iterating a ruler. 
Students determined magnitudes and range in values for each proposed source of error. These 
values were typically established by conducting informal investigations (e.g., repeatedly 
leaving a small space or gap when iterating the ruler and determining the maximum magnitudes 
of under-estimation that typically resulted from this source). Figure 1 displays a facsimile of a 
student model in which chance slips in iterating a ruler might lead to under-estimates (i.e., gaps 
between iterations of the ruler, so that some length was left unmeasured) or overestimates (i.e., 
overlapping units on the ruler, so that some space was measured more than once). This model 
reflects a belief that errors of large magnitude are less likely than smaller magnitude errors. 
Students simulated the outcomes of the measurement process as a composition (sum) of signal, 
usually estimated by the classroom sample median measure of the perimeter, and the outcomes 
of the random devices, which represented different sources of error, such as those depicted in 
Figure 1.  
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Figure 1. Student model of  relative chance of different sources and magnitudes of iteration 
error 

 
Establishing criteria for “good” models As students developed, compared, and contrasted 

their models, they discussed how to decide whether or not their model was good. A common 
initial approach was to compare perceptually the extent to which a simulated sample 
approximated the center clump of the sample. Students also tended to focus on the extent to 
which simulated sample statistics matched or came “near” to those of the sample. Some 
students noticed that as they ran the model more often, their initial impression of goodness was 
often misleading, perhaps because a sample-simulated sample correspondence was just 
“lucky.” The teacher seized upon this notion of luck to remind students that the empirical 
sample is but one of many that they could have obtained, just as one simulated sample was one 
of many that the model could generate. Subsequently, most students collected sample statistics 
obtained from repeated runs of their models and constructed sampling distributions of their 
model’s statistics. To assess model fit, they compared the empirical sample statistics of center 
and precision of measure to these sampling distributions. Decisions about fit, in turn, guided 
revisions to their models.  

 
Using model-based sampling distributions to guide inference After deciding that their 

model was a good representation of the measurement process, students were shown new sample 
statistics purportedly constructed by another class, first a median and then an IQR. Students 
considered the possibility, proposed by the teacher, that the new measurements had perhaps 
been made on a table with a different perimeter. They also evaluated the claim that a change in 
the method of measure (e.g., by using a different measuring tool) made the measurements more 
precise. Students used TinkerPlots to partition their model-based sampling distributions and 
identified the percent of simulated medians or simulated IQR’s that were the  same as (or that 
exceeded or were less than) the new sample statistics. This process of model invention, 
revision, and model-guided inference was extended to other contexts of signal-noise, and 
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eventually, to natural variation. In all, 14 lessons were devoted to student investigations of 
sampling, constructing and revising models, and making inferences. 

 
2. METHODS  

 
2.1.  PARTICIPANTS 

 
Twenty-eight students in a Grade 6 class participated in all phases of the instruction. Of 

these, a convenience sample of 12 (modal age 11 years), consisting of 7 males and 5 females, 
was individually interviewed at the end of instruction. Interviewees were chosen on the basis 
of availability, given end-of-year schedules, and all had participated in most of the instructional 
activities within the design study. The middle school was located in the southern region of the 
United States, and at the time of the study, approximately 72% of the students qualified for 
lunch supplements (indicating comparatively low parental/custodial income).  
 
2.2.  PROCEDURE 

 
Each student was interviewed either by the author or by a graduate assistant. Interviews 

were conducted in a separate room and were video recorded and later transcribed for analysis. 
The interview was semi-structured and flexible; all students responded to the same scenarios 
(described next) but interviewers were given flexibility in responding to each student’s 
interpretation of a scenario. Consequently, although all students encountered a core set of 
questions, the interviewer often employed follow-up probes to obtain insight about how 
particular students were reasoning. Thus, the interview was a form of conversation intended to 
follow the contours of a student’s reasoning (Ginsburg, Jacobs, & Lopez, 1998). 

 
2.3. INTERVIEW PROTOCOL 

 
The flexible interview consisted of three scenarios with related questions.  

 
Scenario 1: Mystery spinner, sampling distribution The first scenario presented a 

“mystery” spinner in TinkerPlots. That is, the structure of the spinner was hidden (it appeared 
as a blank), but students were told that it was partitioned into 2-colors (in fact, the spinner area 
was 60% red, 40% blue). We asked students to speculate about the structure of the spinner and, 
if they said they were uncertain, to suggest the number of times that the spinner should be run 
to make a judgment, and to explain why. The purpose was to probe students’ understanding of 
the value of a larger sample for inferring the structure of the device. These questions were 
directed toward students’ conceptions of sample variability and sample size (Research 
Question 1). 

We did not allow a student to run the spinner a large number of times, but instead ran it 
once 10 times. We then asked the student if s/he would like to guess about the structure of the 
spinner in light of its outcomes, or if, instead, s/he preferred to collect more samples of ten 
spins each (a sample size of 10). To probe conceptions of sample-to-sample variation, we asked 
students to anticipate what would happen in the next sample. We also asked them to justify the 
number of samples they considered necessary to be “more certain” about their predictions of 
the spinner structure.  
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Figure 2 displays an empirical approximation to a sampling distribution (500 samples) of 
a statistic (percent red), with the median and IQR of the sampling distribution visible. The 
interviewer showed the student this display and asked him or her to interpret a few of the cases 
on it (i.e., the interviewer pointed to a case value of 100%, a case value of 40%). Each student 
then inferred the structure of the spinner and interpreted the meanings of the median and IQR 
of the sampling distribution. Students predicted the effects on the median and IQR of a change 
in the sample size. We asked students to explain why a fictive observer noticed that, with a 
sample size of 10, a sample statistic of 10 percent red was rare in the sampling distribution, but 
this outcome was never observed with a sample size of 100. (Students did not actually view 
the second sampling distribution.) This sequence of questions informed the second research 
question. 

 

 
 

Figure 2. Sampling distribution of statistic, percent red, for mystery spinner 
 

Scenario 2: Modeling skills, grounds of informal inference The second scenario involved 
a model of signal and noise. It was intended to elicit students’ conceptions of models and to 
assess their practical modeling skills. The scenario also provided an opportunity to ask about 
students’ criteria for deciding whether the model presented was “good.” Following this 
exploration of student conceptions and skills, students saw sampling distributions of sample 
statistics generated by the model and then made and justified a decision about whether or not 
a statistic obtained from a new empirical sample represented a real change. This sequence of 
questions informed the third and fourth research questions. 

Students were informed first of the results of an analysis of the magnitudes and likelihood 
of errors that resulted in an over- and under-estimation of the circumference of a person’s head. 
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The errors were described as resulting from using a tape measure. The interviewer explained 
that sometimes the measurer pulled the tape too tightly, so that it stretched, and on other 
occasions too loosely, leaving slack in the tape. The analysis was represented by a model that 
combined the sample median and tape error, as illustrated in Figure 3. The model was simpler 
than those invented by students during instruction. 

 
 

 
 

Figure 3. Model representing measurements of head circumference 

Students predicted the shape of the data that would result from running the model. Students 
also described the criteria they considered when deciding whether or not a model was a “good 
one.”  After these initial responses, students were shown a sample of the “actual 
measurements,” with statistics of median and IQR visible (Figure 4). They were also invited 
to run the model to decide whether this particular model was a good one. If the student did not 
bring it up, the interviewer asked whether one run or multiple runs of the model would be better 
for informing this decision, and to explain why they thought so. 
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Figure 4. Sample distribution of head circumference measurement 
 

After recording students’ impressions and investigations with the model, we presented two 
empirical sampling distributions of model parameters (n = 200 simulated samples of size 50), 
one of the simulated median and the other of the simulated IQR (see Figure 5). The sampling 
distribution of medians was tightly centered about the sample median of actual measurements, 
but the median IQR of the sampling distribution of simulated IQR was 3, not 2, as obtained in 
the actual sample. To assess generalization of the meaning of a case in a sampling distribution, 
we asked students about the meaning of the case values in the sampling distributions (repeating 
the question posed in the first scenario, albeit now about simulated samples generated by the 
model). The interviewer asked again about student impressions of the goodness of the model 
in light of the sampling distributions.  
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Figure 5. Sampling distribution of simulated sample IQR’s 
 
Students then considered a different sample median of 60 cm., described as obtained by 

another group of measurers. We asked students to decide if the new median represented the 
same person’s head or the head of a different person. Students explained their decision. Last, 
we asked students how they would alter the model to produce a U-shaped sample distribution, 
and then, how to alter the model to produce a uniform distribution.  
 

Scenario 3: Modeling production, informal inference The third scenario addressed 
students’ conceptions of model-based inference in the context of a process for manufacturing 
batteries. It was designed to inform the fourth research question. Students first interpreted a dot 
plot of the lifetime (in minutes) of 50 batteries, and responded to interviewer questions about 
the likely target value of the process and the consistency of the products. (The median and IQR 
were visible in the display).  

The interviewer then revealed a “good” model of the production process that included 
sources of variability that affected battery life, such as chance variations in chemical 
composition and temperature, as displayed in Figure 6. Students also saw model-based 
empirical sampling distributions of simulated sample median (see Figure 7) and IQR for 
batches of 50 batteries. For each sampling distribution, the interviewer asked students about 
the likelihood that a sample median or an IQR was equal to or exceeded a particular value just 
by chance. The intention was to assess students’ skills in relating the sampling distribution to 
probability. 
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Figure 6. Model of production process for batteries with lifespan in minutes 
 

 
 

Figure 7. Sampling distribution of median for 100 simulated samples of size 50 
 
Students were informed that the battery company had financed a new production process 

to increase the lifespan and consistency of their product. The company tried out this process to 
produce a batch of 50 new batteries, and the head of research claimed that the new production 
median of 164 represented a real improvement over the previous process. Students were asked 
how the head of research might use the sampling distribution obtained with the model of the 
old process to buttress this claim. About 9% of the sampling distribution of model-simulated 
medians met or exceeded this value. Students were asked how someone might respond if he 
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were less convinced that the new process was a genuine improvement. Students made a similar 
determination about a claim that the new process resulted in improved consistency of battery 
lifespan, based on a sample IQR of 8 for the batch of 50 new process batteries. In the sampling 
distribution of model-simulated IQR’s, this value occurred rarely (1%). 
  

Coding student responses To analyze the interviews, we adapted a coding scheme 
developed in a previous iteration of the design that was also conducted with sixth-grade 
students (Lehrer, Jones, & Kim, 2014). The initial scheme was carefully reviewed by a visiting 
scholar in statistics education, who carefully reanalyzed two of the video recorded interviews 
conducted during this investigation and identified a few distinctions that were not included in 
the initial scheme. The interview coding protocol was adapted to reflect these novel elements.  

Annotated transcriptions were developed for each interview, including interviewer 
questions and probes, student responses, interpretations of elements of student knowledge, and 
additional notes about possible ambiguities in interpretation or additional comments about the 
potential significance of student talk or gesture. I then coded all transcripts, and the visiting 
scholar recoded half of the them. Disagreements were rare and were resolved by consensus. I 
inspected the codes across scenarios to create analytic themes that were responsive to the 
research aims of this inquiry, following a grounded inquiry approach (Corbin & Strauss, 2008). 
  

3. RESULTS 
 
3.1. CONCEPTIONS OF SAMPLE AND SAMPLING VARIABILITY 

 
Recall that the first interview scenario involved guessing the hidden structure of a 2-color 

spinner. Student responses to questions about this scenario revealed how they conceived of 
sample variability and how they thought about the influences of sample size on this type of 
variability. Students’ interpretations of a sampling distribution of a statistic generated for each 
sample (percent red) indicated how students conceived of cases in a sampling distribution and 
how they predicted and explained the influence of sample size on statistics of center and 
variability. 

 
Sample variability All but one student (n =11, 92%) initially were uncertain about the 

hidden structure (e.g., “It could be anything”). The exceptional student, CA (initials of 
pseudonymous identity), said that he knew the spinner structure was 50-50 and further 
suggested that two repetitions of the spinner would verify his prediction. In contrast, all the 
others reported that observing the outcomes of a large number of repetitions of the process 
would increase their confidence in an estimate of the percentage of the spinner area that was 
red. For example, JP mentioned that “…the more points (outomes) you have, the closer it 
gets…it will round out to what the real spinner is.” JP went on to make an analogy to a related 
random process of coin flipping: “If you flip a coin a billion times, the decimals will round out 
to… [gestures 50-50] and [be] a good estimate.” Another student, GB, said,  “If you only had 
a few (repetitions of the spinner) you would only be able to see what happened with those few, 
but if you have many, you could see what happens with the big picture.” A third, SD, imagined 
a very thin slice of one color and said one would need a very large number of repetitions, 
“…because the smaller it is (the sector occupied by one color), the more times you have to 
repeat it, just in case.” Some students (n =5, 42%) further explained their confidence in large 
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samples by claiming that increasing “precision,” a statistic of the variability of measurements 
invented during instruction, is associated with increasing sample size. For example, TK 
declared, “The more you run it, the more precise it’s going to be,” and CS said, “Find out its 
structure by running it and running it again…and again, enough so that I can see more of a 
precision” [This statement was accompanied by a hand gesture illustrating a decreasing span]. 
Yet another student, IW, felt that running the spinner a large number of times would result in 
a more precise estimate. She contrasted her preference for a large sample to a sample of size 
10: “…because it’s just by chance, so like, if it’s a 50-50 spinner, then it could be like 20% red, 
80% blue” [with a small sample]. She went on to point out that with a larger sample, the 
estimate would more likely approximate the true ratio. Students who did not explicitly invoke 
precision nevertheless tended to associate more outcomes with increasing the likelihood of 
more “accurate” estimates of the structure of the spinner. This language of “accuracy” appeared 
to reflect an expected reduction in the variability of estimates with increased sample size (here 
explicitly meaning number of repetitions of the process). In summary, for this simple process, 
students appeared to hold an image of a sample as originating in the generation of variable 
outcomes resulting from repetition of a chance process. Moreover, nearly all the students 
appreciated that a statistic estimated a population parameter (e.g., percent red area of a spinner) 
better with large samples rather than with small ones. Students anticipated a reduction in 
variability of estimated values with increasing sample size.  

 
Sampling variability Given a constraint of a sample size of 10, all students preferred a 

larger, rather than smaller, number of samples to guide inference. The previous exceptional 
student, CA, justified his switch in thinking as follows: “Because with a large number of 
samples, you can get it (estimate of percent red) more precise.” Every student interpreted each 
case of the sampling distribution as a statistic that summarized a sample of 10 repetitions of 
the mystery spinner, with the statistic indicating the percentage of the 10 repetitions that were 
the indicated outcome (e.g., those landing in the red sector). For example, CA noted that a case 
value of 40% red in the sampling distribution meant: “Based on this [indicating a case value in 
the sampling distribution], 4 [outcomes] were red, 6 were blue one time out of the 500 
(samples) collected.”  

All students judged that the median estimated the percentage of red in the mystery spinner 
(e.g., LL: “Like, with the median is at 60, you are not going to put, you are not going to have, 
be guessing that the spinner would be 50-50”). For students, the sensibility of the median as a 
valid estimate was buttressed by its location within the center clump of the sampling 
distribution. For example, BP said, “The data is mainly right here (gestures to center clump); 
it looks like the center to me, and 60 percent is the median.” Considering the influence of a 
change in sample size from 10 to 100, all students predicted that the median of the sampling 
distribution would not change. The students explained their anticipation of no or little change 
either by appealing to the invariant structure of the spinner (e.g., GB, “because you are still 
keeping it 60-40”; SD, “because you’re not changing the spinner you’re just changing how 
many times it repeats”) or by noting the increased precision of estimate for larger samples. For 
example, CA explained that the median would “…stay the same because you made the sample 
size 100. That will mean that the data will get more precise and more clumped up and that will 
mean that the median here [gestures to column of values that include the median] will stack up 
more on the 60.”  
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All but one student (92%) predicted that the increase in sample size from 10 to 100 would 
decrease the IQR of the sampling distribution. Students’ justifications typically included an 
expectation of increased precision with larger sample sizes and a corresponding concentration 
of cases about the center. For example, CA explained, “I think it [the IQR] will decrease, 
because if you take away (gestures to both tails of n=10 sampling distribution while 
simulaneously decreasing his hand span) since we run it more times, it will be more precise, 
so then these would decrease (gestures toward tails) and these (center values) will get more 
clumped, which means that the 50 percent range will get smaller.” 

At the conclusion of this portion of the interview, students explained the absence of 
extreme cases (i.e., 10% percent-red) in a sampling distribution with a sample size of 100 and 
the presence of such cases in a sampling distribution with a sample of size 10.  Students’ 
justifications (92%) were consistent with their previous interpretations that invoked the 
unchanging structure of the spinner. For example, GB said, “It [sampling distribution of sample 
size 100] would have to be exactly 10 out of those 100 times; that’s a lot harder to do than just 
1 out of 10, because the odds are against (that) red percentage. It’s not made to be—it’s not 
supposed to be less than what it is, which is 60%.” 

In summary, in this simple scenario involving a hidden spinner, students appeared to 
construct a hierarchical image of sample with sample statistics understood as case values of a 
sampling distribution and with statistics of the sampling distribution interpreted as estimating 
characteristics of the generating process. In the next sections, students’ conceptions of sample 
are revisited in the more complex context of modeling processes that include multiple 
components of signal and noise.  
 
3.2.  STUDENTS’ MODELING SKILLS AND CRITERIA FOR “GOOD” MODEL 

 
To employ models as tools for thought, students must be able to conceive of relations 

between components of the model and distributions of outcomes, and they must develop 
criteria that inform their judgment of the adequacy of a model. The second scenario, which 
involved repeated measures, provided a window to these aspects of student thinking.  

 
Modeling skills All students (n =12) modified the model of signal and noise appropriately 

to produce alterations in the distribution of outcomes by revising the proportions of error that 
would result in either more uniform or U-like distributions. For example, to create a uniform 
distribution, CS pointed to the error component of the model of head circumference 
measurment depicted in Figure 3 and indicated how a more uniform distribution could be 
obtained: “Just equalize angles (a TinkerPlots function). That way they would be all equal 
(each magnitude of error) so we would have an equal chance of getting 54 thru 62 (the sum of 
the fixed signal and random error). And so to do that we need to alter all of them to make them 
all equal and add up to 100 and make it as likely as we can” (Gestures flat distribution with 
hand moving level above table). For the bi-modal, U distribution, CS again looked at the area 
occupied by each magnitude (e.g, +4 or -4) of the model of head circumference. He suggested 
that: “We’d have to reverse everything pretty much…so I think -1, 0 and 1 would get smaller 
while -2, -3, -4, 4, 3, and 2 will get bigger (with the largest magnitudes of error now occupying 
the largest proportion of the area of the spinner.) Students had not practiced this particular 
problem during instruction. Hence, their performance indicates that they were able to imagine 
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how particular configurations of magnitude and likelihood of random errors might influence 
the distribution of outcomes.  

 
Criteria for good models When the interviewer asked students how they decided whether 

a model was a good one (e.g., “When you think about whether or not a model is good, what 
kinds of things do you consider?”), all students suggested multiple criteria. A majority (75%) 
advocated that a model should explain or represent a process. For example, LL suggested that 
a good model is one that “…shows what actually happened and if they count in all the errors. 
And how much those errors weighed in on it.” All students stated that good models generated 
outcomes that approximated those of empirical samples. As QC stated, “Because there’s 
always chance and it can always be different. But it can’t be too different.” The idea of models 
as approximations was often expressed as reference to “possible values” generated by the 
model but not present in the empirical sample. JH recalled a time during instruction “…when 
there was no 9 on the graph [the empirical sample value] but it was possible, so you still have 
to account for it [in your model].” The grounds of approximation typically included statistics 
of center and variability and the shape of the data. As AC comprehensively summarized, “See 
if the measures of center are close together, take the shape of the data, also see your endpoints, 
range, IQR, and average deviation.”  

However, students suggested that comparisons such as those suggested by AC should be 
based on generating many simulated samples with the model, not a single simulated sample. 
As LL noted, “…then you know if your model is being consistent.”  Half of the students (n =6) 
spontaneously mentioned the value of generating sampling distributions of model statistics to 
compare with sample statistics, a feature supported by TinkerPlots. For example, CS said, 
“Also a tactic that we use that you might want to do is to collect statistics.” When presented 
with sampling distributions of model statistics, all students followed through on this strategy, 
making judgments about the goodness of the model displayed in Figure 2 by comparing the 
sampling distributions of model statistics with their counterparts in the empirical sample. In 
summary, student responses to the second scenario indicated that they had developed modeling 
competencies, a common interpretation of models as approximations of processes, and a wide 
range of strategies and criteria for judging model fit. Of these, use of sampling distributions 
indicated a model-based generator of a hierarchical image of sample. In students’ views, 
possible values produced by models generated sample-to-sample variability, and this 
variability was encapsulated by sampling distributions of model-based statistics.  

 
3.3. STUDENTS’ MODEL-BASED INFORMAL INFERENCE 

 
The influences of models and model-based sampling distributions on students’ thinking 

about the grounds of inference are next described for repeated measure (scenario 2) and 
production (scenario 3) processes. In each scenario, assuming a model of a process was valid, 
students decided about the validity of claims made about alterations to the modeled process on 
the basis of a statistic that represented a sample purportedly drawn from the altered process. 

In the repeated measure (second) scenario, students responded to a question about whether 
a new sample median of 60 might indicate measures of a different person. Half of the students 
spontaneously employed the model-based sampling distribution to make this inference. For 
example, GB decided, “Based on this [sampling distribution of simulated model medians], 60 
[the new sample median] isn’t even a possibility. But at the same time, there could be a chance 
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that it could be 60 because they could have messed up in some way.” The interviewer asked 
GB to clarify, and he answered that even though the value of 60 was absent in the sampling 
distribution of 200 samples, it might still appear with many more samples, making it 
“…possible, just not likely.” When asked for further explanation of their decisions, two other 
students also referred to the sampling distribution. The other four students justified their 
inferences by superimposing an imagined translation of the existing sample distribution 
centered about the new sample median. They judged that a center clump shift of this magnitude 
was not likely under conditions of repeated sampling and concluded that the new sample 
consisted of measures of a different individual. For example, AC decided in this way: “[It’s] a 
different person, becasuse if they did measure the same person, I think their numbers would 
match up pretty closely with this one [the existing sample]. Not exactly, but pretty closely, in 
this, it [the new sample median value in the original sample] only occurred 4 times out of 50, 
that’s almost, like 1/10 and their median [the new sample] was 60, so I think they measured a 
different person.” 

In the third signal/noise scenario about the production of batteries, the interviewer and 
student first established that the median statistic of the sample estimated the likely target value 
of the production, and that the sample IQR was a measure of the consistency of the product. 
Recall that students had access to an empirical sample of battery life spans, a model of the 
manufacturing process with components consisting of a visible target value and different 
sources of error, and sampling distributions of the simulated model medians and IQRs. With 
this information, students were asked how they would support the claim, made by a fictive 
head of research, that the new production process resulted in a real improvement in average 
duration of batteries. Students also considered how a skeptic, who did not believe the head of 
research, could use the same data to conclude that no real improvement had been achieved.  

Students inspected a sample median representing the improved process. Ten of the 12 
students (83%) referred to the sampling distribution of model-simulated median battery life 
span to make a decision. For example, BP justified his decision that average life span had 
improved by pointing to the model-generated simulated sampling distribution of medians, 
declaring, “It does not look like it is very likely, there are only 9 dots in there [counting the 
values in the sampling distribution of 164 and higher], 9% likely.” He went on to suggest that 
the skeptic might “…look at that (the same region) and say that it’s a pretty big portion.”  The 
other two students imagined a shift in the center clump of the sample consistent with the new 
value of 164, but deemed it unlikely just by chance. They thus considered the shift as 
supporting the claim of real improvement. With regard to the skeptic (the counterfactual), 4 of 
the 11 who were asked mentioned a pragmatic concern—the small magnitude of the difference 
probably would not be noticed by consumers. Seven other students reflected BP’s perspective 
and cited the sampling distribution as indicating that the median value did occur in that 
distribution, so “…there could be a little chance, but it’s probably not.”  

When asked whether product consistency had improved, all but one student employed the 
model-simulated sampling distribution of the IQRs to decide that the new sample’s IQR was 
not likely to have been generated by the old production process. For example, BP mentioned 
that an IQR of 8 appeared only once in the sampling distribution. “That’s 1%, and with the 
[new empirical sample representing the improved process] you got an IQR of 8 immediately 
and that’s not very likely.” Similarly, JH imagined the sampling distributions of the modeled 
(old) and improved (new) processes, saying, “Well, if our only sample is 8 [the new process 
empirical sample IQR], this one [the model-simulated sampling distribution of IQR] says it 
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only happens one time out of 100 times. So, this one [again pointing to model-generated 
sampling distribution], I’m guessing that their first sample was a 14 [imagines the process of 
constructing the simulated sampling distribution] because that is what happened the most, so 
if our first sample [the improved process] is an 8, then I think it’s going to happen more times.” 
In light of the duration of the interview, we asked only half of the students for counter-
arguments to this second claim of a more consistent product. Five of these students again 
referred to the sampling distribution to justify skepticism (e.g., GB: “This is just one time 
(sample)..it’s not likely, (but) it’s possible”).  

In summary, the use of modeling to generate images of sample-to-sample variability was 
leveraged by these students to extend the reach of informal inference. When students were 
asked to judge the validity of a model of a process that involved tangible components of random 
noise and signal, many students’ inferences were guided by a hierarchical image of sample 
supported by sampling distributions of model statistics. JH’s responses perhaps best exemplify 
a network of coordinations among modeling, hierarchic image of sample as represented by the 
sampling distribution of model-generated statistics, and inference.  

 
4. DISCUSSION 

 
During eight weeks of instruction, students had repeated opportunities to experience and 

conceptualize multiple aspects of variability, to model variability by generating processes 
involving signal and noise, and ultimately, to consider how inference could be sustained in 
light of chance variation. The findings of the interviews and previous research support a 
possible pathway for introducing young students to model-based inference by leveraging 
contexts of signal and noise (Konold & Lehrer, 2008). 

The early phases of instruction emphasized describing, representing, and measuring 
variability, practices that served as a foundation for getting a grip on variability (Reading & 
Reid, 2010; Reading & Shaughnessy, 2004; Wild & Pfannkuch, 1999). Moreover, because the 
initial measurement task was tangible and because multiple sources of variability were evident 
to students via their firsthand generation of measurements, students could construct an image 
of variability as arising from a repeated process. Understanding how variation arises 
(Pfannkuch & Wild, 2004) and building an image of repeated process are seeds of statistical 
inference (Thompson et al., 2007). Students’ interpretations of measurement as composed of 
true measure (signal) and “mistakes” (errors) helped them reconcile expectation and 
variability, concepts that are further bedrock for understanding variability (Konold & Pollatsek, 
2002; Petrosino, Lehrer, & Schauble, 2003; Watson, Callingham, & Kelly, 2007). These initial 
foundations were likely important for students’ subsequent explorations of modeling these 
processes. 

Unlike operating random devices (e.g., spinners, dice), which students readily attribute to 
chance, modeling requires the additional representational step of imagining how the syntax of 
a process that does not ostensibly involve the operation of chance devices can nevertheless be 
well represented by them. This is typically a difficult step for young people (Lehrer & 
Schauble, 2006), that requires going beyond just achieving a firm grasp of the behavior of 
chance devices. In this instructional sequence, students drew upon statistics they originally 
developed to measure signal and noise (e.g., precision) of repeated measures to understand 
better the outcomes generated by random devices. As suggested by their responses to the first 
scenario, which involved a hidden random device, students tended to interpret the operation of 
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the random device as governed by a signal, the structure of the spinner, and chance. They 
expected increasing sample size to increase the precison of estimates of the structure of the 
spinner. Student interpretations of sample-to-sample variation in the operation of the random 
device were similarly guided by conceptions of precision and signal (structure). Hence, they 
predicted that increases in sample size would not influence a statistic of center of the sampling 
distribution, but would increase the precision of estimation (and, accordingly, decrease a 
statistic of variability).  

Employing these simple random devices, students invented and revised models of 
measurement and production processes. These models were composed of signal and random 
errors that were represented by multiple random devices. As they ran their models, students 
came to understand models as approximations to processes, rather than as direct copies. This 
perspective of model approximation was a gateway to reasoning about any sample as an 
instance of a succession of samples—each trial of the model generated what students conceived 
of as possible values, and the collection of these values constituted a simulated sample. 
Conceiving of model outputs as possible values helped students come to see any particular 
sample, even one they had generated, as only one of many potential samples. These discoveries 
thus supported their development of a hierarchical image of sample (Saldanha & Thompson, 
2002, 2014).  

Sampling distributions of model statistics further expanded students’ grasp of inference in 
light of uncertainty. One expansion was that sampling distributions were accepted as a 
conceptual tool for judging model fit, as students began to recognize that one or two instances 
of correspondence between a simulated sample and a sample in the world could occur just by 
chance. Consequently, students’ criteria for “closeness” when guaging model fit shifted to 
include attending to the center clump of sampling distributions of simulated statistics and to 
their correspondence with the center and variability of the empirical sample. A second 
extension was students’ use of sampling distributions to evaluate claims about changes in a 
process. With sampling distributions, students had a tool for quantifying the variability of a 
statistic from sample to sample. They did so by locating the value of a new sample statistic 
within the sampling distribution of the statistic generated by a “good” model.  

Most students appreciated that decisions made in light of the bands of uncertainty 
suggested by the sampling distribution of model statistics could be mistaken. That is, they 
understood that what was at stake was chance, rather than certainty. Manor Braham and Ben-
Zvi (2015) and Manor Braham (2016) described this form of thinking as probabilistic reasoning 
about sampling distributions. Even those students who did not explicitly employ the sampling 
distribution to guide their inference nonetheless judged the plausbility of a claim by imagining 
the likelihood of claims made about sample statistics in light of sampling variability about the 
existing sample (Lehrer & Schauble, 2004). That is, if one imagined a claimed statistic as a 
new center of distribution, how likely would such a shift be? This is a form of distributional 
thinking that was likely supported by conducting multiple runs of a model and observing the 
resulting variability in outcomes. 

The instructional approach taken here shares a commitment with other programs of 
research that employ modeling to generate sampling distributions as a way of expanding young 
students’ grasp of inference. The properties of contexts that afford productive conceptual 
challenges and opportunities as students invent and revise models deserve further study. For 
example, Konold and colleagues situated inference in modeling processes that involve signal 
and noise (e.g., Konold & Harradine, 2014), whereas Manor Brahm and Ben-Zvi (2015) 
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supported students in generating sampling distributions by re-sampling questionnaire data 
about personal preferences that students and their peers have generated. In the research 
conducted by Manor Brahm and Ben-Zvi, students determined the size of a sample required to 
achieve sufficient confidence about an inference relating to the questionnaire data. These two 
approaches may have different pedagogical advantages. In the context of signal and noise, 
processes can be experienced firsthand, whereas those involved in individual differences and 
natural variability are largely invisible (Lehrer & Schauble, 2007; Konold & Lehrer, 2008). 
For example, personal preferences likely arise from complicated histories. Yet personal 
perferences may be of more sustained interest to students than signal-noise processes of 
measuring or making products. Perhaps learning environments should deliberately span 
multiple forms and contexts of modeling in which probabilistic inference is at stake. 

The limitations of this research imply that its conclusions are tentative. The process of 
model-based inference unfolded as the culmination and coordination of related practices of 
visualizing and measuring variability, which are important building blocks of modeling. The 
classroom was led by a skillful teacher who was attuned to students’ thinking. The sample was 
restricted to convenience due to students’ schedules. And there is no evidence concerning 
whether these young students would routinely anticipate the generation of a sampling 
distribution for any process for which they had reasonable expectations that chance was 
operating. It is also worth reiterating that most of the modeling conducted by students was of 
systems and processes that were visible, contexts in which they could causally influence the 
distribution of outcomes (e.g., by using different tools to measure, or by changing methods of 
making products). This task feature has previously been acknowledged as an important support 
for grasping variability (e.g., Biehler, 1999; Pfannkuch, 2011). Perhaps most critically, 
modeling variability initatiated these students into the dialog between data and models that 
Cobb and Moore (1997) describe as essential to statistical practice (Pfannkuch & Wild, 2000). 
It is this integration between data generation and modeling that will likely prove most fruitful 
for students in the long run. 
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