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ABSTRACT 

 
This article examines how two processes – reasoning with statistical modelling of 

a real phenomenon and aggregate reasoning – can co-emerge. We focus in this case 
study on the emergent reasoning of two fifth graders (aged 10) involved in statistical 
data analysis, informal inference, and modelling activities using TinkerPlotsTM. We 
describe nine phases of the students’ articulations of aggregate and modelling 
reasoning as they explored a small sample, constructed a model and generated random 
samples from this model to examine its validity. These phases are distinguished by the 
students’ views toward data, variability, and models. We discuss implications and 
limitations of the results. Despite the idiosyncrasy of the case, the lessons are important 
because they open a new direction for research about reasoning with data and models. 

 
Keywords: Aggregate reasoning; Exploratory data analysis; Informal statistical 
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1. INTRODUCTION 
 

One of the core aspects of statistical reasoning is handling data from an aggregate point 
of view (Hancock, Kaput, & Goldsmith, 1992), namely, viewing data as an entity with 
emergent properties, such as shape, center, and spread (Konold, Higgins, Russell, & Khalil, 
2014). Young students tend to see data as individual cases and measurement values as 
inseparable from an object or person measured. Students who cannot develop a notion of 
an organizing structure with which they can see the whole instead of just the elements miss 
the essential point of doing statistics, which is predicting properties of aggregates (Bakker 
& Hoffmann, 2005). Therefore, developing students’ aggregate view of data is a key 
challenge in statistics education (Bakker, Biehler, & Konold, 2004). Placing data modelling 
at the heart of statistics learning can address this challenge by prompting students to search 
for patterns in data and to account for variability in those patterns (Pfannkuch & Wild, 
2004). Data modelling processes themselves entail aggregate reasoning processes (Lehrer 
& Schauble, 2015). In this article, we study the co-emergence of aggregate and modelling 
reasoning processes. This case study is part of a UK-Israel research project aimed at 
developing and studying a modelling approach for teaching and learning statistics (Ainley, 
Aridor, Ben-Zvi, Manor, & Pratt, 2013; Ainley & Pratt, 2014). We concentrate here on 
how fifth graders’ modelling of an authentic phenomenon using TinkerPlotsTM (Konold & 
Miller, 2011) supported the articulation of co-emerging aggregate reasoning and reasoning 
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with modelling. We focus on the way they articulated their reasoning with models and 
modelling and the shift between local and aggregate views of data. 

We start by reviewing relevant theoretical background on informal statistical 
reasoning, aggregate reasoning, reasoning with variability, modelling, exploratory data 
analysis and Active Graphing. In Section 3, we present the methodology, the pedagogical 
approaches that guided the design of the intervention, and the Dalmatians Task. Next, we 
present the main results of this research in the form of nine primary phases through which 
the students’ statistical reasoning coevolved between aggregate and modeling approaches. 
We conclude with theoretical and pedagogical implications and limitations of the research. 

 
2. SCIENTIFIC BACKGROUND 

 
2.1. INFORMAL STATISTICAL INFERENCE 

 
Informal Statistical Inference (ISI) is a relatively new view of teaching statistics that 

embraces informal ways of making inferences (Maker & Rubin, 2009). Teaching ISI aims 
at deepening learners’ understanding of the key ideas of statistical inference in relation to 
other key statistical ideas (Garfield & Ben-Zvi, 2008). ISI is based on making 
generalizations beyond the given data, expressing uncertainty with a probabilistic language 
and using data as evidence for those generalizations. The methods of ISI, unlike formal 
statistical inference that uses formulas and procedures, need not necessarily be the standard 
methods accepted by the statistics community (Makar & Rubin, 2009). The reasoning 
process leading to making ISIs is termed Informal Inferential Reasoning (IIR, Makar, 
Bakker, & Ben-Zvi, 2011). IIR is a cognitive activity that involves formulating 
generalizations (e.g., conclusions, predictions) about “some wider universe” from random 
samples of data using various statistical tools, while considering and articulating evidence 
and uncertainty (Ben-Zvi, Gil, & Apel, 2007). IIR includes reasoning with several key 
statistical ideas such as: sample size, sampling variability, controlling for bias, uncertainty, 
and properties of data aggregates (Rubin, Hammerman, & Konold, 2006). 
 
2.2. AGGREGATE REASONING 

 
Developing statistical reasoning involves moving beyond a local view of data toward 

a global view of data, and the ability to shift flexibly between these views according to the 
need and the purpose of the investigation (Ben-Zvi & Arcavi, 2001; Konold et al., 2014). 
A global view of data is called aggregate reasoning (Konold, Pollatsek, & Well, 1997). 
When viewing data as an aggregate, a data set is considered as an entity, or as a group with 
emergent properties, which are different from the properties of the individual cases 
themselves (Friel, 2007). Konold et al. (2014) defined a hierarchy of three other 
perspectives of viewing data that differ from an aggregate view: 
1. Data as pointers to the context of the data source without referring to the data 

themselves. Data cases serve as reminders of the larger event from which they came 
(e.g., referring to events that happened during the data collection that are not 
necessarily seen in the data). 

2. Data as case values that provide information about the value of some attribute for each 
individual case (e.g., focusing on extreme values). 

3. Data as classifiers that give information about the frequency of cases with a particular 
attribute value. Such cases are perceived as a unit with similar properties (e.g., the 
mode of the data). 
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The notion of distribution as an organizing conceptual structure is supported by 
aggregate reasoning (Bakker & Gravemeijer, 2004) that concentrates on the distribution’s 
features such as: the general shape, how spread out the cases are, and where the cases tend 
to be concentrated within the distribution (Konold et al., 2014). Aggregate reasoning with 
categorical data might refer to frequencies using percentage or quantitative descriptors 
(e.g., “most”, “majority”), and with numeric data, it might relate to measures of center (i.e., 
mean, median), shape (e.g., symmetry, skewness), density (actual or relative frequency, 
majority, quartiles) and spread (e.g., outliers, range, interquartile range, standard deviation) 
(Cobb, 1999; Friel, 2007). Two important properties of aggregate reasoning are: 1) 
distinctions between signal and noise; 2) recognition and diagnosis of various types and 
sources of variability (e.g., natural variability, variability due to measurement error, 
sampling variability) (Rubin et al., 2006). 

 
2.3. REASONING WITH VARIABILITY 

 
Variability means that something is apt or liable to vary or change (Reading & 

Shaughnessy, 2004). When reasoning with data, two types of variability are considered: 
the “real” variability, which is a characteristic of the phenomenon and an “induced” 
variability resulting from data collection (measurements, sampling, and accident). 
Responses to variability are varied. Variability can be “ignored” or considered nonexistent 
by describing every object in the phenomenon as the same or different in some 
deterministically known way. Variability can be “allowed for” and described using 
conditions for its existence. Finally, variability can be “controlled” by trying to change 
patterns to something more desirable, for example, by isolating causes (Wild & Pfannkuch, 
1999). 

The search for sources of variability in data entails looking for patterns and 
relationships between variables: “regularities.” When no regularities are found, variability 
can only be estimated globally. When some regularities are found but their causes cannot 
be explained or cannot be manipulated, variability might be estimated locally by measures 
of variability that are relevant for individual cases. When it is possible to explain and 
manipulate regularities’ causes, controlling variability can be considered. The more we are 
able to explain regularities’ causes, the higher the confidence in our ability to predict from 
data (Wild & Pfannkuch, 1999). 

A signal is a constant cause, or a stable property of a variable system, such as the mean 
or line of fit. It can become evident only in the aggregate. Noise can be considered as 
variable causes that serve to introduce variability around any signal (Rubin et al., 2006). 
The signal can be considered as the “explained” variability and the noise as “unexplained” 
variability (Wild & Pfannkuch, 1999). One can think about a signal in a noisy process as 
the certainty in situations involving uncertainty (Konold & Pollatsek, 2002). Modelling a 
phenomenon entails the search for differences and similarities within the population 
attributes, which is an initial step toward reasoning with variability (Lehrer & Schauble, 
2012). 

  
2.4. MODELS AND MODELLING 

 
In general, modelling is considered a form of explanation that is characteristic – even 

defining – of science (Lehrer & Schauble, 2010). It is a process of forming a simplification 
of a phenomenon (the model) on the basis of key theoretical aspects and data in a particular 
discipline, as well as evaluating and improving it to include theoretical ideas or new 
findings (Lesh, Carmona, & Post, 2002). Modelling reasoning entails deliberately and 
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temporarily turning attention away from the investigated phenomenon to construct a model 
(Lehrer & Schauble). In this study, we term reasoning with models (artifacts) and 
modelling (process) as “reasoning with modelling”, or as “modelling reasoning”. 

Mathematical models are abstract constructs that focus on structural characteristics or 
on a general pattern that is common to several systems (Lesh & Harel, 2003). In statistics, 
mathematical models are used to represent a general pattern of the data (Moore, 1990). A 
model can be defined as an analogy that simplifies a real phenomenon and describes some 
of the connections and relations among its components. A model can be formed by 
observing a real phenomenon and selecting and focusing on features that are relevant to a 
specific purpose for which it was constructed. It might be abstract (conceptual) or concrete 
(e.g., graph, table, dice). The abstract model can represent a real-world system and the 
conjectures about it in order to describe, explain, predict, and elaborate on its behavior 
(Lehrer & Schauble, 2010; Wild & Pfannkuch, 1999). A concrete model can serve as a tool 
for a) representing a process, such as a production of the population, its key components 
or properties through prediction or by sampling; and b) making an inference about the 
representativeness of a random sample (as in this case study). 

Models can be classified as static or dynamic. A static model is one that does not 
generate data. It is constructed to describe the population or predict its behavior. A dynamic 
model is one that can generate random data (a simulation), in order to answer questions 
about the model’s validity, representativeness of a random sample, etc. Students’ 
transitions between static models and dynamic models can support their reasoning with the 
representativeness of random samples (Manor Braham & Ben-Zvi, 2017). 

Models and modelling are essential elements of statistical reasoning and thinking (Wild 
& Pfannkuch, 1999). The practice of statistics can be considered a form of modelling, as 
the development of models of data, variability and chance pave the way for statistical 
investigation (Lehrer, Kim, Ayers, & Wilson, 2014). Modelling may support the 
emergence of students’ informal statistical ideas (Garfield & Ben-Zvi, 2008). The 
developmental modelling process begins with making sense of a phenomenon and deciding 
what its important elements are and how they can be measured. Next, data are structured, 
organized, and visualized, and efforts are made to aggregate data in various ways according 
to different purposes and to make inferences about the world. This process might inspire 
more modelling cycles, questioning new epistemic ideas (Lehrer & Schauble, 2000; 2004). 

A pedagogical modelling approach puts the modelling process (along with learning 
about the nature and the purposes of models) in the center of the learning process (Schwartz 
& White, 2005). Such an approach can support learners in coordinating their understanding 
of particular cases with an evolving notion of data as an aggregate of cases (Lehrer & 
Schauble, 2004). This can be achieved, among other ways, by recognizing the need to 
summarize and represent data in multiple ways depending on their nature (Pfannkuch & 
Wild, 2004). A pedagogical modelling approach that views real data as a source for a model 
of a situation in the real world can serve as a bridge between data and probability (Hancock 
et al., 1992; Konold & Kazak, 2008) by: a) providing multiple affordances to learn about 
random samples and sampling from an investigated population; b) encouraging 
consideration of key statistical ideas emanating from the study of a hypothetical model of 
this population; c) prompting examination of the connections between these elements 
(Manor Braham, Ben-Zvi, & Aridor, 2013). For example, modelling a random behavior 
might provide an opportunity to experience and reflect upon probabilistic situations. It 
allows mimicking such behavior in a real world system, answering questions about that 
system, and making predictions of future outcomes. Modelling random behavior underpins 
the quantification of uncertainty using statistical inference techniques such as confidence 
intervals and significance testing (Arnold, Budgett, & Pfannkuch, 2013). 
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In this case study, several models (e.g., conjectures, predictions, TinkerPlotsTM graphs, 
and Sampler's models) were developed by a pair of students in an attempt to describe a real 
phenomenon, make predictions about it, and “produce” its population. We focus on the 
emergence of reasoning with these models in relation to students’ views of data, in the 
context of two educational approaches: Exploratory Data Analysis (Tukey, 1977) and 
Active Graphing (Ainley, Nardi, & Pratt, 2000). 
 
2.5. EXPLORATORY DATA ANALYSIS AND ACTIVE GRAPHING 
 

Exploratory data analysis (EDA), developed first by Tukey (1977), is an accepted way 
of approaching the analysis of data (Biehler, 1990). EDA can help develop students’ 
statistical reasoning as they collect, organize, describe and analyse data, with emphasis on 
simple sense-making tools and visual representations, usually with the aid of technology, 
for interpretation, analysis, and inference (Moore, 1997). Making sense of data in their 
context includes clarifying the reasons and purposes for collecting the data, recognizing 
patterns and trends, formulating conjectures, and explaining and drawing informal 
inferences (Pfannkuch, Rubick, & Yoon, 2002). These complex processes require the 
abilities to create and interpret graphs, which can be challenging for students (Ainley, Pratt, 
& Nardi, 2001). 

Active Graphing (AG) is a pedagogic strategy developed by Ainley and Pratt (Ainley 
et al., 2001) to support students’ understanding of graphs. Students are involved in an 
investigative process requiring them to use graphs (created with technology) to solve 
meaningful problems. During this process, students need to be aware of the dependent 
relationship between variables, and to collect, organize and analyse small amounts of data 
in order to decide about their next step in the experiment. Ideally, this process includes 
several iterations of data collection and graphing. The necessity of making sense of graphs 
during this process encourages students to perceive the graph as an analytical tool rather 
than just as a tool for data representation (Ainley et al., 2000). In the current task design, 
we used modelling as a bridge to integrate EDA and AG (Ainley et al., 2013). 

This literature review is a brief description of the main statistical ideas that underlie the 
current research. We elaborated on each of the concepts and the challenges that might occur 
as students' reason about them. In the next section, we present our research question and 
the research method and setting in order to put these ideas in the context of the current 
study. 

 
3. METHOD 

 
3.1. THE RESEARCH QUESTION 

  
In this case study, we focus on two fifth-grade students who were involved in making 

informal statistical inferences and modelling. In this context, we ask: How can students’ 
aggregate reasoning and reasoning with modelling co-emerge? 

 
3.2. THE SETTING AND PARTICIPANTS 

 
In order to address this question, we use data from a pair of fifth-grade students (age 

10) as they participated in the Dalmatians Task – an authentic inquiry of exploration, 
prediction, and explanation of statistical models in the context of ISI. This case study is a 
part of a UK-Israel collaboration (2012-2014) aimed at developing and studying a 
modelling approach for teaching and learning statistics by integrating the benefits of 
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Exploratory Data Analysis (EDA) and Active Graphing (AG) (Ainley et al., 2013; Ainley 
& Pratt, 2014). Constructing a model that would reflect the investigated data and produce 
a realistic population, along with the use of EDA and AG, addressed the students’ need for 
purpose and utility (Ainley & Pratt, 2002). 

The participants were Iddo and Yael, a pair of academically successful and articulate 
ten-year-olds (Grade 5) from two Israeli public schools. Both students had high 
achievement in mathematics. They were communicative students who felt comfortable to 
share their thoughts, beliefs and doubts, and to explain their opinions in case of a conflict 
in order to reach consensus. Both students studied earlier during the school year how to 
calculate the arithmetic mean. Other than that, they had no previous formal experience in 
statistics or TinkerPlotsTM. The students agreed to participate in this study, and they spent 
three consecutive hours on the Dalmatians Task. 

Two researchers (the first author and a statistics education researcher) introduced the 
task and the tools and frequently asked the students to clarify their reasoning. One of them 
presented the task and TinkerPlotsTM to the students and the other focused mostly on 
documentation (recording video and taking notes). TinkerPlotsTM was briefly introduced to 
them by inviting them to experiment with the tool’s interface. For each tool or action that 
the students generated, the researcher briefly described its function. In some cases, the 
researcher offered to add another tool or to extend the action without directing the students 
to construct a certain representation or device (e.g., “you can drag upward to further 
separate the attribute”). When the TinkerPlotsTM Sampler (a tool to model probabilistic 
processes and generate simulated data from them, Konold & Miller, 2011) was presented, 
the researcher described each device, besides the counter, while the students experienced 
it. The option to add dependency between attributes in the Sampler was presented to them 
only after they had tried to invent methods to handle dependency. In this setting, the 
students were encouraged to explore data openly, mixing and generating representations 
that they found interesting and useful, with minor support from the researchers. 

 
3.3. THE DALMATIANS TASK 

 
The children were asked to construct a model (a “machine”, as we termed the Sampler 

model) that would “produce” realistic Dalmatian dogs of different sizes in order to create 
a theme park for the 101 Dalmatians movie. They were asked to base the model on a data 
sample (Figure 1). The sample size was selected to be small in order to encourage the 
students to interpolate and extrapolate while engaging in AG. The values of the quantitative 
variables were similar to the body measures of real Dalmatians: body length was similar to 
height at shoulder, leg length was between half and two thirds of height at shoulder, and 
tail length was a bit more than half body length.  

 

 
 

Figure 1. A realistic data set of five Dalmatians in a TinkerPlotsTM table 
 

spots height tail_length body_length leg_length

1

2

3

4

5

brown 41 23 40 22

black 37 23 37 18

black 26 13 27 14

black 30 19 30 16

black 30 15 31 17
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The actual learning trajectory, which we describe in Table 1, was designed to 
encourage the students to reason informally and openly with key statistical ideas (such as 
distribution, center and variability as signal and noise, models, and sample and sampling), 
express uncertainty, and develop an aggregate view of data, with little help from the 
researchers. 

 
Table 1. The Dalmatians Task actual learning trajectory 

 
Content Min. 
Part I: Context and data worlds 
a) Introduce and discuss the Dalmatians Task: Learn about the task and make 

conjectures about the dog population. 
5 

b) Collect real data: Measure two real Labradors (a breed that is somewhat similar to 
Dalmatians in size): Julie – eight months old, and Sandy – two years old, and 
discuss their properties and the relations between them. 

18 

c) Discuss and analyse a realistic data set of five Dalmatians: A realistic data set of 
five Dalmatians’ spot color, height, tail length, body length, and leg length (Figure 
1) and a sketch explaining the dogs’ measurements (Figure 2) were provided. The 
students were asked to make conjectures, test them and search for relations between 
the attributes using TinkerPlotsTM. 

48 

Part II: Modelling world 
d) Build a model (a “machine”): Plan and build a model with the TinkerPlotsTM 

Sampler to produce realistic Dalmatians. 
30 

e) Draw random samples from the model (run the “machine”): Draw random samples, 
plot and compare them to the realistic data graph. 

89 

f) Evaluate the model and improve it: Evaluate and improve the model according to 
the realistic data and the students’ contextual expectations. 

10 

Total time (minutes): 200 
  

 
 

Figure 2. Dalmatians’ measurements in the Dalmatians Task 
 

3.4. DATA COLLECTION AND ANALYSIS 
 
The students’ investigations were fully videotaped using Camtasia and a video camera 

to capture simultaneously their computer screen, discussions, and actions. Data were 
carefully observed, transcribed, and annotated for further analysis of the co-emergence of 
students’ aggregate and modelling reasoning processes. 

The analysis process focused on the co-emergence of students’ aggregate and 
modelling reasoning, using an interpretive microgenetic method (Siegler, 2006). The entire 
corpus of the data included 830 statements. A statement was defined as a full 
conversational turn of a student or a researcher including at least one sentence. We 
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examined and separated the entire corpus of the statements to 29 activity episodes. Each 
episode reflected a different type of the students’ activity (e.g., measuring real dogs; 
reasoning with relationships between attributes, reasoning about a certain model, etc.). We 
carefully narrowed these episodes down to comprise a narrative of the students’ emerging 
reasoning with data and modelling. In this process, we discarded episodes in which the 
students did not reason with either data or models, or episodes in which a change in the 
students’ perceptions of data and models was not identified. This process resulted in nine 
different reasoning phases, which are presented in Table 2. 

This process involved many rounds of data analysis sessions with expert and novice 
statistics education peers, in which interpretations were suggested, discussed, refined or 
refuted. This process also involved searching forward and backward over the entire data 
set to find acceptable evidence for the researchers’ local interpretations and hypotheses 
(e.g., Ben-Zvi & Arcavi, 2001). In order to strive for “trustworthiness” (Creswell, 2002), 
inferences about students’ reasoning were made only after all data sources (interview, 
TinkerPlotsTM files, and students’ notes) provided sufficient evidence, and interpretations 
from different perspectives and theories and by a number of researchers were triangulated 
(Schoenfeld, 2007). In cases of disagreement between the researchers, e.g., conflicting 
hypotheses about the meaning of the data, we continued debating striving to a consensual 
interpretation, but a few cases remained as unresolved issues. Some of them are reported 
in the Results section. 

 
4. RESULTS 

 
In this section, we present and explain how Iddo and Yael’s aggregate reasoning and 

reasoning with modelling co-emerged as they responded to the Dalmatians task. We 
identify and characterize nine chronological phases of the students’ reasoning with data in 
their progress toward articulations of aggregate reasoning related to variability, uncertainty 
and sampling (Table 2). Although these phases follow in detail the complex process of 
these students’ flow of ideas, hesitations, mistakes and inventions, the generalizability of 
this categorization needs to be further studied. 

Table 2 is divided into two parts: In Part I (phases 1-5) we describe the students’ 
responses to the EDA and ISI tasks in the context world—before the real data collection 
and in the data world—as they reasoned with the collected and given data (Stages a–c in 
Table 1). In Part II (phases 6-9) we portray the students’ responses to the modelling and 
AG tasks, based on their informal inferences from data in the modelling world (stages d–f 
in Table 1). 

 
Table 2. The students’ reasoning with data toward articulation of aggregate reasoning 

 
Part I: Context and data worlds (real dogs’ measurement and realistic data analysis) 
Phase 1: A contextual signal based on rudimentary perspectives of variability 
Phase 2: Pointwise variability explained by a lurking variable 
Phase 3: A monotone relation and unexplained variability 
Phase 4: Aligning signal with noise 
Phase 5: Articulations of aggregate reasoning within relations 
Part II: Modelling world 
Phase 6: Articulations of aggregate features of the population 
Phase 7: Articulations of aggregate reasoning with samples and sampling 
Phase 8: A relation is a signal and a “controlled” variability 
Phase 9: A relation is a signal and random variability 
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4.1. PART I: CONTEXT AND DATA WORLDS 

 
Phase 1: A contextual signal based on rudimentary perspectives of variability The 

researcher introduced the task to the students and asked: “How could we generate realistic 
dogs that would be different from each other?” [19] (Numbers in square brackets denote 
the line numbers of transcript excerpts.) As the students reasoned about the dogs’ 
population and its characteristics, they both explained that they expected to see differences 
between dogs “in the legs, the body length, in everything” [24]. Yael added temper and 
height differences between dogs: “The dogs’ behavior might be very different. Say, there 
can be a quiet and calm dog, and another that is wild; and about their look—there are tall 
dogs, shorter dogs, all types of dogs” [27]. 

When they measured the real dogs, Yael conjectured that, “Sandy is older than Julie, 
so she is supposed to be… all the dimensions of her body should be bigger. Maybe. This 
is just a conjecture” [42]. However, the real dogs’ data showed them to their surprise that 
Julie—the younger dog—was larger and taller than Sandy, but Sandy’s tail was a bit longer 
than Julie’s. Yael therefore said: “What we can infer is that dogs are very, very different 
from each other, although they are of the same breed. There are larger dogs, and there are 
smaller dogs” [70]. 

Yael’s contextual conjectures about the positive association between a dog’s age and 
body measurements and about proportions between a dog’s body parts [42] were an initial 
expression of the expected signal of the phenomenon. At this stage, she considered only 
certain causes of variability, such as age and proportions between dogs’ body parts, but not 
random causes. These conjectures were Yael’s initial models of the population. 
Nevertheless, she was surprised to see that the real dogs’ measurements did not concur 
with her conjectures. She discovered the potential of unexplained causes for the variability 
in the data. In addition to this variability between the dogs, they noticed the variability in 
the dogs’ attributes—the different proportions between the dogs’ measurements. The 
recognition of various types and causes of variability challenged Yael in her attempts to 
simplify the phenomenon and she focused on the variability in data without trying to find 
any regularities in it [70]. These rudimentary perspectives of variability changed in phase 
2 during the analysis of the realistic data (presented in Figure 1). 

 
Phase 2: Pointwise variability explained by a lurking variable After a short 

researcher’s preview of TinkerPlotsTM, the students analysed the given realistic data 
(Figure 1). They examined the relations between the dogs’ attributes in a scatterplot. Iddo 
saw a clear relation between height and leg length (Figure 3): “I think that if a dog has a 
larger leg, then it is higher… you can’t argue with that” [109]. They examined their 
conjecture and said: 

 
117 Iddo: Here [cases 4 and 5] their leg lengths are somewhat similar – more than 17 

[cm] and they are both on 30 [cm in height], which kind of matters. This 
one [case 3] has relatively short legs. He is 14 [cm], so he is not the tallest 
in the world; and that one [case 1] has legs that are 22 [cm long], and he is 
actually the tallest. This [evidence] makes quite a difference. 

118 Yael: I see therefore that our rule [longer leg → taller] works. Let’s see what really 
the difference [between cases] is. 
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119 Iddo: Nevertheless, there are things here that are quite different: there are [leg 
lengths] 17 [cm, case 5] and 18 [cm, case 2]. 18 is very far from 17 [in 
height]. … It [this irregularity] is related also to the body structure. 

 
The students began the realistic data investigation with a conjecture about a possible 

relation (longer leg → taller) that stemmed from their contextual understanding. They 
viewed the data (Figure 3) mostly locally as case values (Konold et al., 2014), focusing on 
extreme values and comparing the variability within and between attributes, in a pointwise 
manner [117]. Each case supported the students’ conjecture, and this led them to change 
their language from conjecture to a “rule” (or a signal) [118]. Nevertheless, they were 
attracted by three cases—two, four and five (Figure 3)—that had the same or similar values 
in one attribute, but a different value in the other. They did not reject their rule, but tried to 
make sense of this pointwise variability, by relating it to body structure [119], a lurking 
attribute that was not part of the given data, rather than considering natural variability or 
measurement error. We therefore interpret the students’ reasoning with data at this stage as 
“pointwise variability explained by a lurking variable.” This search for an explanation for 
the noise in their data led them to the investigation described in phase 3. 

 

  
 

Figure 3. Relation between leg length and 
height (case numbers added by the co-

authors) 

 
Figure 4. Relation between tail length and 

height (case numbers added by the co-
authors) 

 
Phase 3: A monotone relation and unexplained variability The students focused next 

on searching for differences between or within cases by using scatter plots (such as Figure 
3) and comparing the table columns and rows (Figure 1). The focus on cases four and five 
(in Figure 1) led the students to identify that tail length was the only attribute that 
distinguished between these cases, and to discover another interesting pair of cases—one 
and two (in Figure 1) that had the same tail length but differed in all the other attributes. 
They searched the data for attributes that would help them understand these irregularities 
and examined the relation between height and tail length (Figure 4). 

 
246 Both: There is no relation [in the graph, Figure 4]. 
250 Iddo: [But] there is a relation: The smaller the body, the shorter 

the tail … This is not necessarily true, but in some cases, it [height] makes 
quite a difference [on tail length] … I have a fact: One part of a dog cannot 
be huge while the other is very small … It fits. A dog that is biggest in one 
attribute is relatively big in the other attributes. 
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The lack of a clear relation between height and tail length in the scatter plot (Figure 4) 
probably led them at first to question the suggested relation [246]. It seems that they 
thought relations had to be absolute—that is, they didn’t understand yet that a relation could 
exist and still not pertain in every case. Nevertheless, their contextual knowledge led them 
to generalize, “The smaller the body, the shorter the tail” [250]. Such a generalization 
focused on the monotonicity of the relation (see Iddo’s emphasis on claims such as, the 
smaller—the shorter, and “it fits”), without relating to aggregate characteristics of the 
relation, such as the relation’s pattern. 

It seems that such articulations reflected a different view of data and its variability: 
While searching for a relation between two attributes, they took into account explained and 
unexplained variability in the data, and recognized that such relations do not always hold 
(“This is not necessarily true, but in some cases” [250]). This new reasoning with 
variability set the stage for more advanced reasoning with the data, described in phase 4. 

 
Phase 4: Aligning signal with noise After a while, the pair returned to analysing the 

relations between height and body length (Figure 5). 
 

 
 

Figure 5. A trend line to emphasize the relation between height and body length 
 
288 Iddo: The bigger it is here [in height]—the bigger also here [in body length], and 

vice versa.  
291 Yael: [Iddo is using the TinkerPlots pen to draw a trend line, Figure 5.] What Iddo 

actually says is that the taller they are—the longer they are.  
292 Iddo: [Drawing pairs of lines from three cases to the axes, Figure 5.] They [the 

values of height and body length] are more or less the same … 
296 Yael: … I think I understood how we can generate Dalmatian dogs. If, say, we 

want to generate five additional dogs, we can generate one that is very tall, 
let’s say, with a height of 50 [cm] … It [the height] is the most related 
[attribute] to body length. Therefore, the difference between them [height 
and body length] is supposed to be very small. So its body length will be, 
say, 47 [cm]. 

 
The students negotiated their perceptions of the data by describing different 

characteristics of data aggregation while aligning signal with noise: variability between 
attributes [288], covariation while considering the data as a whole [291], and a trend line 
to express the relation’s monotonicity as well as nature and direction (Figure 5). However, 
they still looked at the data locally as they drew pairs of lines from specific cases to the 
axes, in order to examine the similarity between the attributes’ values. These methods 
(trend line, and pairing values) ignited Yael’s idea how to generate more dogs. She 



49 
 

extrapolated a new case (height-50, body length-47) by adjusting height and body length 
taking into account what she considered so far as unexplained variability. Now it was a 
natural variability [296]. 

 
Phase 5: Articulations of aggregate reasoning within relations Yael invented a 

method to assess the strength of a relation between two attributes (Figure 6) by making a 
distinction between “closed” and “open” attributes. 
 
321 
-
325 

Yael: I have made an inference. There are two types of distinct attributes: closed 
attributes and open attributes. There are the tail length and the leg length 
(Figure 7). These two are considered as “closed” attributes … It means that 
the difference between these two attributes within each dog is smaller [than 
other pairs of attributes]. The height and body length are also two “closed” 
attributes (Figure 8) … It is [the “closed” attributes are] relatively similar 
… 
If you compare it [these “closed” attributes] to leg length and body length 
(Figure 9), the difference between these two [leg length and tail length, 
Figure 7] is smaller than the difference between these two [body length and 
leg length, Figure 9, “open” attributes]. 

 

 
 

Figure 6. Yael’s discovery: Relations types between the attributes (translated from 
Hebrew, the original drawing is inside the small frame) 

 

  
 

Figure 7. A relation between leg length 
and tail length: “closed” attributes 

 
Figure 8. A relation between height and 

body length: “closed” attributes 
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Figure 9. A relation between leg length and body length: “open” attributes 
 
The classification Yael invented for the relations between the numerical attributes in 

the dogs’ population divided them into two categories: “closed” attributes that have small 
numeric differences between case values (e.g., height and body length) and “open” 
attributes which have relatively large numeric differences between case values (e.g., body 
length and leg length) [321]. In creating this classification, Yael accounted for 
measurement variability within and between relations. She reasoned in an aggregative way 
within relations by articulating differences between attributes and the level of their 
similarity (“relatively similar” [331]). It seems that the students’ continued attempts to 
model the dogs’ population and to take into account its irregularities encouraged them to 
reason with different characteristics of data aggregations and to assess attributes’ relations. 
These simplifications of dogs’ attributes set the ground for the construction of a 
TinkerPlotsTM model of the dogs’ population in the next phase. 

 
4.2. PART II: MODELLING WORLD 

 
Phase 6: Articulations of aggregate features of the population The students decided 

to model the relation between height and body length—two “closed” attributes. They first 
became familiar with various TinkerPlotsTM modelling devices in the Sampler (curve, 
mixer, stacks, spinner, and bars) that were briefly introduced to them by the researcher. 
They started drawing the height distribution and decided to increase its range slightly in 
relation to the given range in the table (Figure 1). When they drew this distribution as a 
curve (e.g., Figure 10), the following discourse took place. 
 

 
 

Figure 10. Iddo’s construction of the Dalmatians height model in TinkerPlotsTM 
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366 Iddo: We shall first do that small [the frequency of dogs around the minimal 
height value of 21 cm]. There are really not many of these [near 21]. Here 
[near 45] … 

367 Yael: There are not really many [dog’s heights] of these neither [near 45]. Most 
[of them] are placed in the middle. [Instructing Iddo, who holds the mouse:] 
Raise it [the curve] up as it gets closer to the middle, because there are not 
many very short dogs and also very tall dogs of this breed. 

380 Yael: What I am trying to do is create different dogs’ heights, and then I shall be 
able to actually control it [the population], create many, many dogs’ heights, 
say, from 21 to 40. Then, when I see that I have all the heights [range], I try 
to reproduce the different heights according to the likelihood that we shall 
see them. The likelihood that we shall see a dog with, let’s say medium 
height, is higher than a really, really small or really, really tall dog. There 
are more chances that we shall see a dog in a height of, say 36 or 30, rather 
than 42. 

381 Int.: How do you know that? 
382 Yael: Because it [the height distribution shape] is almost like that among people 

and among children. There are a few children who are really tall or really 
short.  

 
In the beginning of the computer modelling process, they experimented with various 

curves to create the height model. Although Iddo preferred a bimodal curve (Figure 10), 
Yael insisted on drawing a symmetric bell shape curve. She explained the need to set the 
heights according to their likelihood based on her contextual knowledge of humans [380-
382]. 

They eventually set the dogs’ height as a discrete numeric variable using the bars device 
(Figure 11). Iddo drew a bumpy distribution, relating to each height’s frequency separately 
according to his predictions in the population (e.g., “there are not many [dogs of height] 26 
[cm]” [440], “there are people who want to have only small dogs” [443]). Unlike Iddo, 
Yael preferred a symmetric and smooth distribution, in which heights’ frequencies were 
set in relation to aggregate characteristics of the population [380]. When the students ran 
the model to generate random samples (Figure 12), their reasoning was further extended 
(Phase 7). 

 

  
 

Figure 11. The students’ final model of the Dalmatians’ 
height in TinkerPlotsTM 

 
Figure 12. A random sample 

generated by the height model 
of Figure 11 
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Phase 7: Articulations of aggregate reasoning with samples and sampling The 
students ran the “machine” (the Sampler) to generate random data (Figure 12) and tried to 
make sense of them. Yael observed that the “machine” drew values only approximately 
according to the model they had constructed, and scattered them throughout the height 
range. One particular height value (28 cm) caught her attention. 

 
504 Yael: We gave it [the model] so many numbers. Why did it particularly choose 

these numbers? And why the same number [28] twice? 
505 Iddo: Because, it [the model] chose according to the percentages [Figure 11]. Do 

you understand? It will not choose a number that had a low percentage. It 
will choose it, but less  It makes a lottery, and chooses them one by one 
 I have a feeling that if we drew a little more [a bigger sample], they will 
change a lot   

536 Yael I noticed another thing. It [The “machine”] didn’t choose the whole interval 
of forties. 

540 
-
544 
 

Iddo We chose only ten out of, I don’t know how many, out of a million.  [we 
need] to draw a bigger number [sample] to assure we definitely get it [a 
forty]  There is no chance really that we shall get all these numbers. It is 
also a very large [range]. If we choose 10 numbers, it will surely not draw 
all of them here. 

 
Based on her previous articulations [380], we assume that Yael expected the sample to 

be an approximate miniature of the bell-shaped model, particularly she seemed to expect 
the 28 cm height to be less common than the center heights (in Figure 11). Iddo, on the 
other hand, took into account the relations between data, sampling variability, and 
randomness. He related the model frequencies to the chance of an event occurring in an 
unknown sized population. Such considerations led him to more sophisticated statistical 
reasoning with modelling by considering sample size and the sample-population 
relationship as important parts of reasoning about the data. Reasoning with these ideas 
introduced uncertainty inherent in the sampling process [540-544] and represented 
progress in their shared knowledge with regard to aggregate reasoning with samples and 
sampling. Having accepted Iddo’s explanation, the students turned to model the body 
length distribution (Phase 8). 

 
Phase 8: A relation is a signal and a “controlled” variability The students added 

another bar device to model the body length in the Sampler (Figure 13). They chose a 
similar range to the height distribution and drew an almost normal distribution shape. They 
generated a random sample of ten cases from their model (Figure 14), and were surprised 
by the absence of “order” or “a diagonal line” [Yael, 595] as in the relation they had 
previously recognized. They tried to change the variability in the scatter plot by editing the 
model. Nevertheless, changing neither the frequencies nor the ranges of the attributes 
helped. 

After a long process of these attempts, the researcher showed the students how to design 
a dependency between two attributes. She explained that now they would be able “to tell 
the machine to set certain body lengths for which heights” [Int., 709]. The students 
expected that they would “need to [use] millions of devices [of the body length to model 
the dependency]  because we want it [the model] to be precise” [Iddo, 748]. 
Acknowledging on their own that this method to control the variability in the data was 
impossible, they separated the body length to five equal intervals, and set a uniform 
distribution for each of them, explaining that they would change it later (Figure 15). 
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Figure 13. A TinkerPlotsTM model of the relations between Dalmatians’ height and body 
length 

 

 
 

Figure 14. A random sample generated from the model of Figure 13 
 

 
 

Figure 15. A TinkerPlotsTM model of the relation between Dalmatians’ height and body 
length 

 
In the beginning of this stage, the students expected to see a clear signal of a diagonal 

line in the random sample scatter plot—resembling their previous hypothesis regarding the 
relation between height and body length in the population. However, the absence of such 
a signal (Figure 14) forced them to rethink their original model (Figure 13). They believed 
that by changing the attributes’ range and shape they would be able to control the 
variability to get this signal, but were unable to find a way to do so. The new dependency 
tool offered them a way to control the variability better by creating “millions” of body 
length devices [748]. This type of reasoning however can be regarded as a regression in 
their aggregate reasoning with data because they wanted to create a different body length 
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distribution for each single height value, hence suggesting a type of local view of data. 
When the students drew a sample from their model, this perception was changed (Phase 9). 
 
Phase 9: A relation is a signal and random variability The students generated a random 
sample (Figure 16) from their new model (Figure 15). They were satisfied with this sample 
as it provided them with a “diagonal line” signal of the relation between height and body 
length. However, this clear signal and relative lack of noise bothered them, as “it [the 
model] gives us the exact same numbers” [Yael, 790]. This led Yael to describe a required 
refinement of their model: “dogs’ attributes values are able to shift between these things 
[each distribution range’s values], while keeping the rule  of really a small difference 
between height and body length” [808]. According to Yael’s claim, the model should 
represent: a) a dependency relation between height and body length; b) a certain rule 
between these attributes; and c) a random assignment of body length values according to 
the defined distribution’s ranges. She therefore recommended using such refined model 
(Figure 15) to create the desired dog population. Nevertheless, she recognized the 
constraints of this model that could only roughly estimate dogs’ sizes because it was based 
on only seven dogs [two real and five given dogs]. 

 

 
 

Figure 16. A random sample generated by the dependency model (Figure 15) 
 

4.3. SUMMARY OF RESULTS 
 
We summarize the results of this study in Table 3 along two dimensions: a) Yael and 

Iddo’s reasoning in relation to the ways they viewed data, related to signal and noise, 
considered different types of variability, and articulated aggregate reasoning; and b) the 
pair’s reasoning with modelling, in relation to the models that they constructed during the 
task. 
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Table 3. Summary of the students’ articulations of aggregate and modelling reasoning 
 

Aggregate reasoning (views of data, relating to 
signal and noise and types of variability) 

Reasoning with modelling 

Part I: Context and the data worlds  
Phase 1: A contextual signal based on rudimentary perspectives of variability  
A signal derived from the context world, based on 
variability, which was ordered according to certain 
causes.  

Unexpected variability between and 
within dogs’ attributes raised doubts in 
ability to model the population.  

Phase 2: Pointwise variability explained by a lurking variable 
Looked at data locally as case values. Compared 
variability between attributes among single cases. 
Related to variability within attributes and variability 
existence explained with a lurking variable.  

A relation verified by looking at single 
cases and explaining causes of 
variability. 

Phase 3: A monotone relation and unexplained variability 
Initial articulations of aggregate reasoning in relation 
to the relations’ monotonicity. Compared variability 
within and between attributes among single cases. 
Considered different types of variability including 
unexplained variability.  

A signal represented by a 
generalization focused on the 
monotonicity of the relation without 
relating to its pattern and explained and 
unexplained variabilities.  

Phase 4: Aligning signal with noise 
Expressed the signal visually as a trend line and 
verified it by looking at the data as case values. 
Related to variability within and between attributes 
as well as covariation while considering the data as a 
whole. Attempted to reason with the population 
aggregately, by suggesting using the signal to 
generate cases.  

A signal within noise, described as a 
trend line that could be used to generate 
more dogs.  

Phase 5: Articulations of aggregate reasoning within relations 
Aggregate reasoning articulations of relations. 
Relations between attributes defined, compared and 
assessed. The criterion – numeric differences 
between attributes’ values in cases, aggregate 
differences between attributes, and similarity level. 

A relations classification between 
attributes and relations in the 
population that divided the attributes to 
two categories by numeric differences 
between attributes and relations. 

Part II: Modelling world 
Phase 6: Articulations of aggregate features of the population 
Articulations of aggregate reasoning with the 
population’s height distribution, considering its 
range, center, shape and density, while partially 
connecting these statistical ideas.  

Different types of models: 
approximately normal, bi-modal, 
approximately normal but bumpy 
distributions. Model reflected the 
likelihood of a height in the population. 

Phase 7: Initial articulations of aggregate reasoning with samples and sampling 
Articulations of aggregate reasoning, relating to 
randomness, sampling variability, and the relations 
between a sample, its size, and the population. 
Reasoning with uncertainty about the sample. 

Model reflected the chance of a height 
being drawn from an extreme and 
unknown-size population. 

Phase 8: A relation is a signal and a “controlled” variability 
Articulations of aggregate reasoning, attending to 
signal and the need for a controlled variability with 
regard to each value in the distribution. 

Model should reflect a dependency as a 
“diagonal line,” representing controlled 
variability and continuity. 

Phase 9: A relation is a signal and random variability 
Articulations of aggregate reasoning, attending to 
signals within noisy processes. Expressed 
uncertainty regarding the data sample. 

Model reflected dependency and 
different types of variability. 
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5. DISCUSSION 
 
This research aimed to explore how aggregate reasoning and reasoning with modelling 

can co-emerge. We addressed this goal by carefully analysing Yael and Iddo’s emerging 
processes of reasoning with modelling and data with regard to various statistical ideas 
during a three-hour modelling task. We identified nine phases of the students’ reasoning 
according to the students’ perceptions of data, variability, and models. In this section, we 
discuss first the emergence of the students’ aggregate reasoning, then the emergence of 
their reasoning with models and modelling, and finally the co-emergence of these two 
processes. We also suggest theoretical and pedagogical implications of this study and its 
limitations. But we first summarize the main lessons of this study. What we learn 
theoretically from this case study is: 

1. For these students engaged with this task, aggregate reasoning and reasoning with 
modelling can be co-emerging processes 

2. The emergence of reasoning with models can support the emergence of aggregate 
reasoning 

3. The emergence of aggregate reasoning can broaden the understanding of the role 
and utility of statistical models 

4. Reasoning with variability and dealing with uncertainty can play important roles 
in the co-emergence of aggregate reasoning and reasoning with modelling. 

Our main pedagogical lesson: purposeful tasks, conflicts and context are important 
elements that can support the emergence of both aggregate and modelling reasoning. 

 
5.1. THE EMERGENCE OF AGGREGATE REASONING 

 
The students’ aggregate reasoning changed as they moved through the context, the 

data and the model worlds. In the context world, the students identified and articulated first 
a signal in the dogs’ population (phase 1). In the data world, their reasoning changed from 
a local view of single cases (phase 2) to a global view of data (Ben-Zvi & Arcavi, 2001), 
considering aggregate aspects of attributes’ relations. These aspects shifted from 
considering only the relation’s monotonicity (phase 3) to considering the relation’s pattern, 
monotonicity and direction (phase 4). The classification of “closed” vs. “open” attributes 
advanced their reasoning from taking into account only the data at hand to attributes’ 
properties in the population (phase 5). 

In the model world, the students’ reasoning with data changed from a local view of 
frequencies of each possible value in the population to a global view of these frequencies 
with regard to the whole population (phase 6). When they generated data from the 
computerized model, they began to consider new statistical ideas: sampling variability, 
sample size, sample-population relation, and uncertainty (phase 7). The students articulated 
aggregate reasoning of the phenomenon as a signal in a noisy process including aspects of 
local view of controlled variability (phase 8). Finally, they withdrew controlling the 
variability and took into account uncertainty and randomness (phase 9). Thus, the students 
began to wander among local to global views of data and aggregate articulations while 
negotiating new understandings of data, variability, sampling, inference, and modelling. 
Although it may seem to be smooth progress for the students, this reasoning process was 
winding and bumpy. 
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5.2. THE EMERGENCE OF REASONING WITH MODELLING 
 
We turn now to discuss the students’ emergent reasoning with modelling. The ongoing 

transitions they made between the context, data, and model worlds played a role in 
extending the utility of the model and in interpreting it as representative of the data. They 
first constructed the models in order to describe the phenomenon (phase 2), predict locally 
(phase 3) or globally (phases 4 and 6) possible cases in the population, and generate random 
data from a model (phases 7-9). Their models changed from representations that 
summarized only the data at hand (phase 2) to data-as-a-whole representations (phase 4) 
and to population representations (phases 6-9). The students’ classification of attributes in 
the population (phase 5) served as a bridge between the data world and the model world, 
as it laid the foundations for possible population models and prompted the assessment of 
these models. 

Generating random data from the Sampler model shifted the students’ reasoning with 
modelling from viewing a model as static to a dynamic entity. This distinction was made 
by Manor Braham and Ben-Zvi (2017) and is similar to the distinction made by Konold 
and Pollatsek (2002) between viewing a population as static versus viewing it as a process. 
When a population is static, causes that might affect the population are not considered. A 
sample taken from a static population is viewed as a subset that allows one to make a 
conjecture about the whole population, even if sampling variability is considered. In 
contrast, when a sample or a population is viewed as a process, it is the product of an 
ongoing process, in which values of cases are determined by known and unknown causes 
(Konold & Pollatsek, 2002). 

We suggest that students’ views of the population are key factors that distinguish 
between static and dynamic models. A model is static when it describes or predicts a 
population that is perceived as static. Similarly, a model is dynamic, when it represents the 
sample or the population as a process. In this case study, models that were discussed before 
the computer data generation characterized the dogs’ population as static and predictable 
from a sample or contextual knowledge (phase 6). After the data generation, students’ 
models characterized the sample or the population as processes that were influenced by 
known and unknown variability causes, such as the chances of events in the population, 
sampling variability, and randomness (phases 7-9). Thus, the students shifted from a 
reasoning with modelling based on context, the data at hand and variability, to a more 
sophisticated reasoning that took into account different types of variability and sampling 
as well. 
 
5.3. THE CO-EMERGENCE OF AGGREGATE AND MODELLING 

REASONING 
 
The emergence of aggregate reasoning and reasoning with modelling was guided by 

the need to articulate coherent properties of the population that would mimic a real 
phenomenon. The search for such properties involved a repeated process of transitions 
between the data and the context worlds in which the students articulated, analysed, 
assessed, and refined possible models of these properties as well as perceptions of data. 
The students examined each of these conjectures in the context world in relation to their 
contextual knowledge about it. They then examined the conjectures in the data world to 
search for a noticeable structure that would justify their initial model. 

In the data world, initial conjectures or models were examined locally in the data. The 
need to extend the inference to a wider population encouraged the students to invent 
methods for generalizing the identified structure in the data. With this need in mind, initial 
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articulations of aggregate reasoning emerged, as well as attempts to represent the initial 
models that described the population visually. The interaction in the students’ thinking 
about data and visual representations of generalizations advanced the students’ reasoning 
with data, as it emphasized the need to attend to data that agreed or disagreed with the 
generalization. Such considerations promoted reasoning with the relations among data, 
model, and the investigated phenomenon, which resulted in expansion of the model’s 
utility. 

In the model world, the students searched for the most suitable representation that 
would express generalizations of the phenomenon as they constructed a model in the 
TinkerPlotsTM Sampler. Their shift between the Sampler’s devices gave the students an 
opportunity to reconsider their reasoning with data. This modelling process supported the 
emergence of articulations of aggregate reasoning as it involved assessing, explaining, 
combining, and structuring properties of the data as a whole (e.g., modelling distributions, 
phase 6). 

Reasoning with the generated random samples (phase 7) expanded the students’ 
articulations of aggregate reasoning with sample and sampling. They acknowledged the 
sample at hand as one possible sample within many possible samples that could be drawn 
from the same population. The students reasoned with properties of such samples while 
considering sampling variability, sample size, randomness, and uncertainty. These 
processes were followed by questions about the sampling process and with an initial 
perception of the population as a process (Konold & Pollatsek, 2002), which resulted in a 
refinement of both aggregate reasoning and reasoning with modelling (phases 8 and 9). 

The co-emergence of aggregate reasoning and reasoning with modelling provided 
opportunities for students to express and examine their evolving reasoning with data and 
modelling. They presented views of different levels of complexity at the same time and 
reasoned with both of them (e.g., a model as a trend line or as a line that connects data 
cases, phase 4, Figure 5). Such encounters can promote students’ reasoning (as the shift to 
a predictive model, phase 4) when they are required to choose the preferred method to 
articulate and model the data. Further research is necessary to study and better understand 
the co-emergence and development of these statistical reasoning processes. 

 
5.4. THEORETICAL IMPLICATIONS 

 
We identified two aspects that accompanied the co-emergence process of aggregate 

reasoning and reasoning with modelling: 1) reasoning with various types and sources of 
variability; and 2) dealing with uncertainty. 

 
Reasoning with various types and sources of variability The students’ reasoning 

process began with a rudimentary view of variability in data—perceived as variability 
resulting from a certain cause, which set an order in the data. When the students recognized 
unexpected variability, they tried to find a cause for its existence, in order to control it in 
their model. If no explanation was found, they expressed doubts either in their ability to 
model the phenomenon (phase 1), or in the correctness of the suggested model (phase 2). 
Later, they accepted unexplained variability as one of the characteristics of the 
phenomenon (phase 3), and insisted on expressing it in their models (phase 9). 

 
Dealing with uncertainty One of the functions of aggregate reasoning is to support the 

understanding of the sample data at hand in a way that allows for an inference about the 
population from which the data were drawn. Such considerations entail accounting for 
uncertainty. The process of modelling often requires the construction of a model from a 
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situation with some level of uncertainty. In this case study, the students confronted and 
evaluated uncertainty while reasoning with data and modelling. They made efforts to 
reason with the uncertainty that was intrinsic to the problem at hand in relation to their 
contextual knowledge (phase 8 and 9). 

Ongoing examination of the way the phenomenon was observed in the data, as well as 
how to model it, entailed the processes of reasoning with variability and dealing with 
uncertainty. This process necessitated a transition from a local view of single values as data 
analysis units toward reasoning with patterns or trends in the data and the population. A 
rudimentary perception of variability might encourage the students to search locally for 
data cases that fit the identified role. A more sophisticated reasoning with variability might 
encourage students to reason about possible data cases that are absent from their sample, 
and to construct models that represent such a population. 

To sum up, this case study implies that reasoning with variability and dealing with 
uncertainty can play important roles in the co-emergence of reasoning with data and 
models. Further research is needed in order to study these roles. 

 
5.5. PEDAGOGICAL IMPLICATIONS 

 
This study gives an example of an engaging modelling task that played a part in 

promoting both aggregate reasoning and reasoning with modelling. The analysis of the case 
study seems to suggest that purpose, conflicts, and context were three important elements 
that supported the development of both aggregate and modelling reasoning. 

The task asked for the construction of a model that generated dogs as similar as possible 
to real dogs’ population. The students formulated a wide variety of conjectures based on 
their contextual knowledge and examined them with the data. Their reasoning with data 
aimed to identify a simplification of the population to describe some of the connections 
and relations among its components. 

The specific request to generate a realistic population of Dalmatians encouraged the 
students to look at the aggregate and to construct a model that would address this request. 
However, this task led the students to focus on the most noticeable relation (height and 
body length) while putting aside other relations that might have been significant as well. It 
is therefore advisable to provide students with more than one purpose when dealing with a 
problem that has several different aspects. In the Dalmatian task, an additional request to 
provide information that would allow producing dogs’ accessories (apparel, beds, etc.) 
might encourage taking into account different aspects simultaneously in model 
construction, or constructing several different models aimed at different purposes. 

Dealing with conflicts between contextual knowledge and data played an important 
role in the process of modelling as well as in the development of aggregate reasoning. This 
role included the encouragement of recognizing and identifying types of variability and its 
sources, as well as reasoning with uncertainty. Therefore, we suggest designing tasks in 
which conflicts might encourage students to articulate and carefully examine their 
reasoning relating to the given situation. In the Dalmatian task, we assume that a broader 
experience in EDA (including real data collection) and ISI before the designed shift to the 
modelling world might elicit such conflicts. 

The context of the given problem also seems to have an important influence on the 
development of aggregate reasoning. We noticed that many of the students’ aggregate 
claims stemmed from the context world. In some stages, when the students argued in the 
context world, they demonstrated aggregate reasoning. At the same time, when arguing in 
the data world, mostly local arguments were given. We therefore suggest beginning by 
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engaging in reasoning about a real phenomenon in the context world before moving to 
reasoning in the data world, and later make connections between the two worlds. 

 
5.6. LIMITATIONS 

 
The two students chosen for this research were considered by their teachers to be both 

able and verbal. In addition, both students were fond of dogs and found the subject of the 
research interesting and engaging. This choice was made in order to enable the collection 
and analysis of detailed data about their aggregate and modelling reasoning during a single 
three-hour task. Even after validating the data interpretation, the idiosyncrasy of the 
phenomena observed in this research of just a single task remain questioned. Giving such 
a task in a class setting might be much more challenging, and might not achieve identical 
results. 

6. CONCLUSIONS 
 
This description is far from exhausting students’ complex processes of aggregate 

reasoning and reasoning with modelling. Nevertheless, this case study presented a new 
aspect of the interrelations between aggregate reasoning and reasoning about modelling, 
which might provide an initial direction for further studies. It seems that this new line of 
research can advance our ongoing vision and efforts to understand and improve the learning 
of statistics. 

 
ACKNOWLEDGEMENTS 

 
This study was supported by the British Academy Small Research Grant Scheme 

(SG112288). The views expressed in this article do not necessarily reflect the views or 
policy of the British Academy. We deeply thank Cliff Konold, Janet Ainley, Dave Pratt 
and the Cool-Connections research group who participated in data analysis sessions of this 
research. We are grateful for the helpful comments of the anonymous reviewers of earlier 
versions of this manuscript. 

 
REFERENCES 

 
Ainley, J., Aridor, K., Ben-Zvi, D., Manor, H., & Pratt, D. (2013). Children’s expressions 

of uncertainty in statistical modelling. In J. Garfield (Ed.), Proceedings of the Eighth 
International Research Forum on Statistical Reasoning, Thinking, and Literacy 
(SRTL-8) (pp. 49-59). Minneapolis, MN: University of Minnesota. 

Ainley, J., Nardi, E., & Pratt, D. (2000). The construction of meanings for trend in active 
graphing. The International Journal of Computers for Mathematical Learning, 5(2), 
85-114. 

Ainley, J., & Pratt, D. (2002) Purpose and utility in pedagogic task design. In A. Cockburn 
& E. Nardi (Eds.), Proceedings of the Twenty Sixth Annual Conference of the 
International Group for the Psychology of Mathematics Education (Vol. 2, pp. 17-24). 
Norwich, UK: PME. 

Ainley, J., & Pratt, D. (2014). Expressions of uncertainty when variation is partially-
determined. In K. Makar, B. de Sousa, & R. Gould (Eds.), Sustainability in statistics 
education (Proceedings of the 9th International Conference on Teaching Statistics, 
ICOTS9, July). Voorburg, The Netherlands: International Association for Statistical 
Education and International Statistical Institute. Retrieved from http://iase-
web.org/icots/9/proceedings/pdfs/ICOTS9_9A1_AINLEY.pdf 



61 
 

Ainley, J., Pratt, D., & Nardi, E. (2001). Normalising: Children’s activity to construct 
meanings for trend. Educational Studies in Mathematics, 45(1-3), 131-146. 

Arnold, P., Budgett, S., & Pfannkuch, M. (2013). Experiment-to-causation inference:  
The emergence of new considerations regarding uncertainty. In J. Garfield (Ed.), 
Proceedings of the Eighth International Research Forum on Statistical Reasoning, 
Thinking, and Literacy (SRTL-8) (CD). Minneapolis, MN: University of Minnesota. 

Bakker, A., Biehler, R., & Konold, C. (2004). Should young students learn about boxplots? 
In G. Burrill & M. Camden (Eds.), Curricular development in statistics education, 
IASE 2004 Roundtable on Curricular Issues in Statistics Education, Lund Sweden 
(163-173). Voorburg, the Netherlands: International Statistics Institute. 

Bakker, A., & Gravemeijer, K. P. E. (2004). Learning to reason about distributions. In D. 
Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, 
reasoning, and thinking (pp. 147–168). Dordrecht, The Netherlands: Kluwer Academic 
Publishers. 

Bakker, A., & Hoffmann, M. (2005). Diagrammatic reasoning as the basis for developing 
concepts: A semiotic analysis of students’ learning about statistical distribution. 
Educational Studies in Mathematics, 60(3), 333-358. 

Ben-Zvi, D., & Arcavi, A. (2001). Junior high school students’ construction of global views 
of data and data representations. Educational Studies in Mathematics, 45(1-3), 35–65. 

Ben-Zvi, D., Gil, E., & Apel, N. (2007). What is hidden beyond the data? Helping young 
students to reason and argue about some wider universe. In D. Pratt & J. Ainley (Eds.), 
Reasoning about Informal Inferential Statistical Reasoning: A collection of current 
research studies. (Proceedings of the Fifth International Research Forum on Statistical 
Reasoning, Thinking, and Literacy (SRTL-5), pp. 29-35). Warwick, UK: University of 
Warwick. 

Biehler, R. (1990). Changing conceptions of statistics: A problem area for teacher 
education. In A. Hawkins (Ed.), Proceedings of the International Statistical Institute 
Round Table Conference (pp. 20-38). Voorburg, The Netherlands: International 
Statistical Institute. 

Cobb, P. (1999). Individual and collective mathematical development: The case of 
statistical data analysis. Mathematical Thinking and Learning, 1(1), 5-43. 

Creswell, J. (2002). Educational research: Planning, conducting, and evaluating 
quantitative and qualitative research. Saddle River, NJ: Prentice Hall. 

Friel, S. (2007). The research frontier: Where technology interacts with the teaching and 
learning of data analysis and statistics. In G. W. Blume & M. K. Heid (Eds.), Research 
on technology and the teaching and learning of mathematics: Cases and perspectives, 
2 (pp. 279-331). Greenwich, CT: Information Age Publishing, Inc. 

Garfield, J., & Ben-Zvi, D. (2008). Developing students’ statistical reasoning: Connecting 
research and teaching practice. Berlin: Springer. 

Hancock, C., Kaput, J. J., & Goldsmith, L. T. (1992). Authentic inquiry with data: Critical 
barriers to classroom implementation. Educational Psychologist, 27(3), 337-364. 

Konold, C., Higgins, T., & Russell, S. J., & Khalil, K. (2014). Data seen through different 
lenses. Educational Studies in Mathematics, 88(3), 305-325. 

Konold, C., & Kazak, S. (2008). Reconnecting data and chance. Technology Innovations 
in Statistics Education, 2(1). Retrieved from http://escholarship.org/uc/item/38p7c94v  

Konold, C., & Miller, C. (2011). TinkerPlots™ 2 [computer software]. Emeryville, CA: 
Key Curriculum Press. Available from http://www.tinkerplots.com/  

Konold, C., & Pollatsek, A. (2002). Data analysis as the search for signals in noisy 
processes. Journal for Research in Mathematics Education, 33(4), 259-289. 



62 
 

Konold, C., Pollatsek, A., & Well, A. D. (1997). Students analyzing data: Research of 
critical barriers. In J. Garfield & G. Burrill (Eds.), Research on the role of technology 
in teaching and learning statistics (pp. 151-167). Voorburg, the Netherlands: 
International Statistical Institute. 

Lehrer, R., Kim, M-J., Ayers, E., & Wilson, M. (2014). Toward establishing a learning 
progression to support the development of statistical reasoning. In J. Confrey & A. 
Maloney (Eds.), Learning over time: Learning trajectories in mathematics education 
(pp. 31-60). Charlotte, NC: Information Age Publishers. 

Lehrer, R., & Schauble, L. (2000). Modelling in mathematics and science. In R. Glaser 
(Ed.), Advances in instructional psychology (Vol. 5, pp. 101-159). Mahwah, NJ: 
Lawrence Erlbaum Associates. 

Lehrer, R., & Schauble, L. (2004). Modelling natural variation through distribution. 
American Educational Research Journal, 41(3), 635–679. 

Lehrer, R., & Schauble, L. (2010). What kind of explanation is a model? In M. K. Stein 
(Ed.), Instructional explanations in the disciplines (pp. 9-22). New York: Springer. 

Lehrer, R., & Schauble, L., (2012). Seeding evolutionary thinking by engaging children in 
modeling its foundations. Science Education, 96(4), 701-724. 

Lehrer, R., & Schauble, L. (2015). The development of scientific thinking. In L. S. Liben 
& U. Müller (Vol. Eds.), R. M. Lerner (Series Ed.), Handbook of child psychology and 
developmental science, Vol. 2: Cognitive processes (7th ed., pp. 671-714). Hoboken, 
NJ: Wiley. 

Lesh, R., Carmona, G., & Post, T. (2002). Models and modelling. In D. Mewborn, P. 
Sztajn, D. White, H. Wiegel, R. Bryant, et al. (Eds.), Proceedings of the 24th annual 
meeting of the North American Chapter of the International Group for the Psychology 
of Mathematics Education (Vol. 1, pp. 89-98) Columbus, OH: ERIC Clearinghouse. 

Lesh, R., & Harel, G. (2003). Problem solving, modelling, and local conceptual 
development. Mathematical Thinking and Learning, 5(2), 157-189. 

Makar, K., Bakker, A., & Ben-Zvi, D. (2011). The reasoning behind informal statistical 
inference. Mathematical Thinking and Learning, 13(1), 152-173. 

Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical 
inference. Statistics Education Research Journal, 8(1), 82–105. Retrieved from 
http://iase-web.org/documents/SERJ/SERJ8(1)_Makar_Rubin.pdf 

Manor Braham, H., & Ben-Zvi, D. (2017). Students’ emergent articulations of statistical 
models and modeling in making informal statistical inferences. Statistics Education 
Research Journal. 

Manor Braham, H., Ben-Zvi, D., & Aridor, K. (2013). Students’ emergent reasoning about 
uncertainty while building informal confidence intervals in an “integrated approach.” 
In J. Garfield (Ed.), Proceedings of the Eighth International Research Forum on 
Statistical Reasoning, Thinking, and Literacy (SRTL-8) (pp. 18–33). Minneapolis, 
MN: University of Minnesota. 

Moore, D. S. (1990). Uncertainty. In L. A. Steen (Ed.), On the shoulders of giants: A new 
approach to numeracy (pp. 95-137). Washington, DC: National Academy of Sciences. 

Moore, D. S. (1997). New pedagogy and new content: The case of statistics. International 
Statistical Review, 65(2), 123-165. 

Pfannkuch, M., Rubick, A., & Yoon, C. (2002). Statistical thinking: An exploration into 
students’ variation-type thinking. New England Mathematics Journal, 34(2), 82-98. 

Pfannkuch, M., & Wild, C. (2004). Towards an understanding of statistical thinking. In D. 
Ben-Zvi, & J. Garfield, (Eds.), The challenge of developing statistical literacy, 
reasoning, and thinking (pp. 17-46). Dordrecht, The Netherlands: Kluwer Academic 
Publishers. 



63 
 

Reading, C., & Shaughnessy, C. (2004). Reasoning about variation. In D. Ben-Zvi, & J. 
Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking 
(pp. 201-226). Dordrecht, The Netherlands: Kluwer Academic Publishers. 

Rubin, A., Hammerman, J. K. L., & Konold, C. (2006). Exploring informal inference with 
interactive visualization software. In A. Rossman & B. Chance (Eds.), Working 
cooperatively in statistics education (Proceedings of the 7th International Conference 
on the Teaching of Statistics, Salvador, Bahia, Brazil, July 2-7). Voorburg, The 
Netherlands: International Association for Statistical Education and the International 
Statistical Institute. Retrieved from 
http://iase-web.org/documents/papers/icots7/2D3_RUBI.pdf 

Schoenfeld, A. H. (2007). Method. In F. Lester (Ed.), Second handbook of research on 
mathematics teaching and learning (pp. 69-107). Charlotte, NC: Information Age 
Publishing. 

Schwartz, C., & White, B. (2005). Meta-modelling knowledge: Developing students’ 
understanding of scientific modelling. Cognition and Instruction, 23(2), 165-205. 

Siegler, R. S. (2006). Microgenetic analyses of learning. In W. Damon & R. M. Lerner 
(Series Eds.) & D. Kuhn & R. S. Siegler (Vol. Eds.), Handbook of child psychology: 
Volume 2: Cognition, perception, and language (6th ed., pp. 464–510). Hoboken, NJ: 
Wiley. 

Tukey, J. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley. 
Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry (with 

discussion). International Statistical Review, 67(3), 223-248. 
 

KEREN ARIDOR 
keren.aridor@gmail.com 

Faculty of Education 
University of Haifa 

199 Aba Khoushy Ave. 
Mount Carmel 
Haifa 3498838 

 ISRAEL 


