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ABSTRACT 
 
This study examines the transferability of results from previous studies of simulation-based 
curriculum in introductory statistics using data from 3,500 students enrolled in an introductory 
statistics course at Montana State University from fall 2013 through spring 2016. During this time, 
four different curricula, a traditional curriculum and three simulation-based curricula, were used. 
Student success rates and understanding of six key statistical concepts are compared among these 
curricula using mixed logistic regression. Results indicate that after controlling for salient covariates, 
differences in student success rates are minimal while student understanding under the simulation-
based curricula are similar to or better than student understanding under the traditional curriculum 
suggesting simulation-based curricula may help increase student understanding of several key 
statistical concepts.  
 
Keywords: Statistics education research; Simulation-based inference  
 

1. INTRODUCTION 
 
For nearly the past twenty years, the introductory statistics course has been taught using a curriculum 

in which statistical inference is based almost exclusively on the normal distribution (Rossman & Chance, 
2014). This “consensus curriculum” is typically comprised of three major units as described by Malone, 
Gabrosek, Curtiss, and Race (2010): descriptive statistics and study design, probability and sampling 
distributions, and statistical inference. Under this curriculum, students’ focus is primarily on procedures 
and formulas (Cobb, 2007). In contrast, the GAISE guidelines (Aliaga et al., 2005) emphasize conceptual 
understanding of statistics and statistical literacy through the use of active learning, real data, and 
technology in introductory statistics courses to teach statistical concepts and analyze data. Cobb (2007) 
further challenged the consensus introductory statistics curriculum by suggesting that statistical concepts 
are best learned through randomization-based inference, now feasible with advances in computing. 
Following these guidelines, several simulation-based textbooks (e.g., Lock, Lock, Morgan, Lock, & Lock, 
2012; Tintle et al., 2016; Zieffler, 2012) have been written.  In this paper we refer to these curricula 
collectively as simulation-based curricula. A number of articles have been written that serve as case 
studies that describe the development and implementation of simulation-based curricula at various 
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institutions (cf. Budgett, Pfannkuch, Regan, & Wild, 2013; Fitch & Regan, 2014; Lock, Lock, Morgan, 
Lock, & Lock, 2014; Roy et al., 2014). 

Because these curricular changes are intended to improve student understanding of fundamental 
statistical concepts, several studies have been conducted to assess the impact of the simulation-based 
curriculum on student understanding. The work of Tintle and his colleagues provides an in-depth 
assessment of the effect of simulation-based curriculum on student learning at a single institution. Tintle, 
VanderStoep, Holmes, Quisenberry, and Swanson (2011) compare pretest and posttest scores on the 
Comprehensive Assessment of Outcomes in Statistics (CAOS; delMas, Garfield, Ooms, & Chance, 2007) 
tool for students at Hope College taking a consensus-based introductory course in fall 2007, students at 
Hope College taking a simulation-based version in fall 2009, and a national sample. Results indicate that 
CAOS scores increased similarly on all scales measured for both curricula except for statistical inference 
where gains in student understanding are greater for students under the simulation-based curriculum than 
those under the consensus curriculum. In a follow-up study of a subset of the students from their 2011 
study, Tintle, Topliff, VanderStoep, Holmes, and Swanson (2012) found that students in the simulation-
based class had better retention of the material compared to students in the consensus class.  

Other previous studies (cf. Chance & McGaughey, 2014; Chance, Wong, & Tintle, 2016; Chance, 
Holcomb, Rossman, & Cobb, 2010; Holcomb, Chance, Rossman, Tietjen, & Cobb, 2010; Pfannkuch & 
Budgett, 2014; Taylor & Doehler, 2015; Tintle et al., 2014) have focused on evaluating gains in students’ 
understanding of specific elements of statistical inference such as p-values, confidence, and significance. 
The results of these studies have ranged from neutral to positive in that the gains in students’ 
understanding of statistical inference under simulation-based curricula are comparable to or greater than 
the gains observed by students taught using the consensus curriculum. Tintle and his colleagues 
(Swanson, VanderStoep, & Tintle, 2014; Tintle et al., 2014) have also investigated student attitudes 
towards statistics under the simulation-based curriculum. This work indicates marginal, but practically 
insignificant, improvements in students’ attitudes towards statistics under the simulation-based 
curriculum in comparison to the consensus curriculum.  

Taken altogether, these previous studies show promise for the simulation-based curriculum and bring 
to light more questions. As noted by Tintle et al. (2014), one such question is: “Are the findings 
transferable to institutions beyond the single institution described in the initial papers (Tintle et al., 2011, 
Tintle et al., 2012)?” Concerns exist regarding the generalizability to other institutions due to differences 
in student populations and instructors across institutions. For example, at larger institutions, introductory 
statistics courses are typically taught in multiple sections, often by graduate teaching assistants and 
adjunct faculty who are often not involved in creating the curriculum. This may limit the findings found 
at larger institutions as the “typical” instructor at these institutions differs considerably from those at 
smaller institutions. 

This study aims to add to and expand the existing literature on the impacts of simulation-based 
curriculum on student outcomes by using data from Montana State University, a public university of 
around 16,000 students that offers baccalaureate, master’s and doctoral degrees, to assess the impact of 
simulation-based curriculum on student success and understanding in Stat 216: Introduction to Statistics 
for students enrolled in the course from fall 2013 through spring 2016. This course is primarily taught by 
graduate teaching assistants and adjunct faculty who are not primarily responsible for curriculum 
development. During this time, four different curricula, as described in Section 2, were used to teach this 
course. Two different student outcomes measures are used. First, we compare student understanding 
across the four curricula using mixed effects logistic regression. Student understanding was measured 
using six questions taken directly from or very closely aligned with the CAOS instrument. We then use a 
mixed effects logistic regression to compare success rates among these four curricula. The choice of 
response variables and how they and the chosen covariates are measured are explained in Section 2.  
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2. METHODOLOGY 
 
2.1.  PARTICIPANTS FROM STAT 216 AT MSU 

 
The participants in this study were students enrolled in Stat 216: Introduction to Statistics at Montana 

State University (MSU) from fall semester 2013 through spring semester 2016, excluding summer 
sessions. During this time, a total of 4,265 students enrolled in this course. As explained below, because 
our data are from two different sources the sample size for the analysis of student understanding differs 
from the sample size of the analysis of student success. 

 
2.2.  STAT 216 AT MSU 

 
Stat 216 is offered through the Department of Mathematical Sciences at MSU and is the largest 

course on campus (annual enrollment in Stat 216 is currently around 1,500 students, representing 
approximately 10% of total student enrollment at MSU). Each semester multiple sections (16 to 22) are 
taught, each with around 40 students. The course is primarily taught by graduate students and adjunct 
faculty with sections occasionally taught by tenure track statistics faculty. Classes meet either three times 
per week for 50 minutes on Mondays, Wednesdays, and Fridays (MWF) or twice a week for 75 minutes 
on Tuesdays and Thursdays (TR).  

Because Stat 216 is required by most degree programs at MSU, it is often seen as a “gatekeeper” 
course students must pass to proceed in their programs of study. In the past, students have struggled with 
the course, leading to high withdrawal rates and low grades. Students ended up taking the course multiple 
times causing concern by the MSU administration about student progress. Under the encouragement of 
MSU administration we considered different teaching methods and curricula that might improve student 
outcomes. In particular, we implemented two major changes: choice of curriculum and classroom layout. 
 

Curricula The topics covered in Stat 216, regardless of the curriculum used, include descriptive 
statistics and statistical inference, including hypothesis tests and confidence intervals for one proportion, 
one mean, two proportions, two means, and regression slope in simple linear regression. From fall 2013 
through spring 2016 these topics were taught using four different curricula as described below.  
 

DVB: This consensus curriculum was designed using Stats: Data and Models, 3rd  edition, by 
DeVeaux, Velleman, and Bock (2008), covering Chapters 1–22. Class time was primarily 
devoted to lectures over the material covered in the book. In fall 2013, 13 of the 21 sections were 
taught using this curriculum and in spring 2014, 7 of the 17 sections used this curriculum.  

 
CATALST: In spring 2013 we piloted the simulation-based Change Agents for Teaching and 
Learning Statistics curriculum (CATALST; CATALST, 2012) in a limited number of sections. 
Starting in fall 2013 this curriculum was more widely implemented with eight out of 21 sections 
using this curriculum, eight of 17 sections used this curriculum in spring 2014, and in fall 2014 
eight out of 22 sections used this curriculum. The CATALST curriculum incorporates model 
eliciting activities (MEAs) and implements the ideas proposed by Cobb (2007) using a 
simulation-based approach to understanding inference. This curriculum consists of three units: (1) 
Chance Models and Simulation, (2) Models for Comparing Groups, and (3) Estimating Models 
Using Data (Garfield, delMas, & Zieffler, 2012), and uses TinkerPlotsTM software (for more 
details on TinkerPlots, see Konold & Kazak, 2008; Konold et al., 2011; Konold & Miller, 2011) 
to illustrate statistical concepts via simulation. Because the CATALST curriculum is designed to 
be used for a terminal statistics course, several modifications were made to the curriculum. In 
spring 2014, Unit 1 was shortened by replacing the iPod Shuffle MEA with an activity entitled 
How random is ‘random’ drug testing. In the original activity, students examine what it means 
for data to be randomly generated and explored the expected distribution of randomly generated 
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data. The new activity focuses on similar concepts, but does so in more detail. In Unit 3 the 
second activity on sampling distributions was used but otherwise this unit was rewritten to 
formalize the connection between hypothesis tests and confidence intervals by introducing a 95% 
confidence interval as a list of plausible values that would not be rejected when tested at a 5% 
significance level. An activity called Kissing the right way, which focuses on inference for one 
proportion, was introduced. Starting in fall 2014 the use of TinkerPlots was replaced with StatKey 
web apps as described below. 
Lock: In spring 2014, two sections piloted the use of a simulation-based curriculum based on the 
Lock et al. (2012) textbook and its associated web apps. This curriculum covered material from 
Chapters 1–6 and made use of StatKey, web apps developed to accompany the textbook. Starting 
fall 2014, 14 out of 22 sections used this curriculum as it replaced the DVB curriculum. The 
ordering of topics during fall 2014 and subsequent semesters was changed to be consistent with 
the ordering of topics used in Tintle et al. (2016). The same curriculum was used in spring 2015 
with 9 out of the 17 sections. This curriculum was primarily delivered using lectures with 
occasional in-class activities. 

 
MSU: Starting spring 2015, we implemented a simulation-based curriculum that we refer to as 
the MSU curriculum. The topics and order of the topics are the same as under the Lock 
curriculum with two major changes in how the course is taught. The first is that R-Shiny web 
apps were developed and used for simulation based-inference (with one app from Rossman and 
Chance (2008) also being used). These apps, called Sp-IntRo Stats (Robison-Cox, 2016), are 
found at https://github.com/MTstateIntroStats/SpIntro-Stats. The second major change was in the 
pedagogy. Classroom time consisted of active learning during which students worked through 
activities in groups. During spring 2015 eight of the 17 sections used this curriculum. In fall 2015 
and spring 2016 all 22 and 18 sections, respectively, used this curriculum. The materials for this 
course are available as a course pack at https:// github.com/MTstateIntroStats/IntroStatActivities.  

 
Classrooms Courses were taught in one of two types of classrooms—regular or technology enhanced 

active learning (TEAL) classrooms, which are similar to student-centered active learning environments 
for undergraduate programs (SCALE-UP) classrooms (for more information see Beichner, 2006) and 
Beichner and Saul, 2005). Although large computer monitors on the walls make the room look different, 
the major change in the TEAL classrooms is the use of 7-foot diameter round tables seating nine students 
that allow students to easily work in three groups of three. Regular classrooms are the traditional lecture 
style classroom with moveable desks facing the front of the room. From fall 2013 through spring 2015 all 
sections taught using the CATALST and MSU curricula were taught in TEAL classrooms while the other 
sections, which were all taught using the DVB and Lock curricula, were taught in regular classrooms. 
Starting in fall 2015, when all sections used the MSU curriculum, sections taught in the regular 
classrooms tried to mimic the set-up in TEAL classrooms, if possible, by moving desks into arcs with 
three students in one group facing three others in another group to form a rough semicircle. 
 
2.3.  VARIABLES 

 
Data were obtained from two different sources. Data regarding student understanding were collected 

by the Stat 216 Student Success Coordinator, a non-tenure track faculty member responsible for 
coordinating Stat 216 at MSU. These data include measures of student understanding as well as 
classroom and course characteristics as described below. These data were measured at the section level. 
Data for the analysis of student success were obtained from the MSU Office of the Registrar. These data 
include the academic outcome (letter grade or W for withdrew) in Stat 216 and the student characteristics 
as described below. The data for this analysis are measured at the student level. It is important to note that 
the data from the Student Success Coordinator and the Office of the Registrar were measured at two 
different levels. Because of this, in our analysis of student understanding we are only able to control for 
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the classroom and course characteristics described below whereas for the analysis on student outcomes, 
we are able to control for the student characteristics described below, as well as the classroom and course 
characteristics. Approval for use of these data in this study was obtained from the Institutional Review 
Board at MSU. 

 
Student understanding As statisticians we care that our students actually master the concepts of 

introductory statistics, not just about their final grade. To assess student understanding we use data 
collected by the Student Success Coordinator. As part of the final exam for each semester, six questions 
taken either directly from or developed to align with items from the CAOS instrument were asked. Slight 
modifications were made each semester by changing the scenario presented but not the topic being 
assessed. The six topics we consider and the item(s) they correspond to are: understanding the purpose of 
randomization in an experiment (item 7), understanding that correlation does not imply causation (item 
22), understanding that lack of “statistical significance” does not guarantee that there is no effect (item 
23), ability to recognize correct and incorrect interpretations of p-values (item 25, 26, and 27), ability to 
correctly interpret a confidence interval and to identify misinterpretations of the confidence level (items 
28, 29, 30, and 31), and understanding of the factors that allow a sample of data to be generalized to the 
population of interest (item 38). For each section, the Student Success Coordinator recorded the number 
of students correctly and incorrectly answering each of the six questions. 

 
Academic outcome in Stat 216 We use the academic outcome in Stat 216 as a measure of student 

success from which we create a binary variable with two levels: success (final grade of A, B, or C) or 
non-success (final grade of C- or lower, or withdrew from the course after the 15th day of instruction with 
approval of the instructor and the student’s academic adviser). This variable was chosen as the response 
as the MSU administration was initially concerned about student success rates in Stat 216. Because 
assessments given and expectations across semesters and curricula are similar, we feel that comparing 
success rates is reasonable. Other possible ways of defining academic outcome were also considered but 
due to the similarity in results and the interests of our administration we ultimately chose to define 
academic outcome dichotomously as success/non-success.  

 
Classroom and course characteristics Of primary interest in this study is the impact of curriculum on 

success rates and student understanding. Type of curriculum falls into one of four categories: DVB, 
CATALST, LOCK, or MSU as explained previously, with MSU serving as the reference group. Type of 
room the course met in (TEAL or regular) was included using an indicator variable with the regular 
classroom serving as the reference group. Days of the week the given section met (MWF or TR) was 
included as an indicator variable with TR serving as the reference group. The time of day the section was 
taught (morning or afternoon) was included as an indicator variable with morning serving as the reference 
group. A set of indicator variables was initially considered to model all the different times of day sections 
meet but ultimately was not chosen as this option requires the use of a relatively large number of indicator 
variables and does not provide additional information regarding success rates. An indicator variable for 
term (fall or spring) with spring as the reference group and three indicator variables for year (2013, 2014, 
2015, or 2016) with 2016 as the reference group were also included. 

It is important to note that there are several potential issues with confounding in this study in regards 
to classroom level characteristics. The days on which the course was taught and length of course are 
always confounded. Further, the simulation-based activities were originally developed for use in sections 
taught on TR and were initially taught exclusively in TEAL classrooms leading to confounding of 
curriculum, classroom type, and days of the week the class met. Starting fall 2015, all sections, regardless 
of type of classroom and days of the week the course met, were taught using the MSU curriculum. 
Sections meeting on TR and two sections meeting on MWF were taught in TEAL classrooms in fall 2015 
whereas in spring 2016 more MWF sections, though not all, were taught in TEAL classrooms.  
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Student characteristics Due to limited demographic information available on the students from the 
Registrar’s Office and the retrospective nature of this study, a limited number of student level 
characteristics are included in the analysis. Demographic information such as gender and race/ethnicity is 
not available for this analysis nor do we have baseline measures for student understanding of statistical 
concepts, such as a pre-assessment given at the beginning of the semester. Though this is somewhat 
limiting, the student population of MSU is relatively homogeneous and we are able to include several 
variables to help control for student ability. An exploratory analysis (not included here) of the student 
characteristics described below indicate that these characteristics are similar over time and across 
sections. 

Class standing, with senior serving as the reference group, and cumulative MSU GPA (on a 4 point 
scale) , as an overall measure of academic ability, were included. Less than 1% of the students taking Stat 
216 were in their first semester and had no MSU GPA. We expect that students in their first semester 
differ from the other Stat 216 students so we ultimately decided to exclude these students from our 
analysis on student success. 

Mathematical ability is included by using student transcript information: previous math courses taken, 
grades for each, and scores on standardized exams. Prerequisite math courses, including title and course 
number, include College Algebra (M121), Math for the Liberal Arts (M145), Language of Mathematics 
(M147), Secrets of the Infinite (M149), Precalculus (M151), Survey of Calculus (M161), Calculus for 
Technology I (M165), Calculus for Technology II (M166), and Calculus I (M171) or higher. Nine 
indicator variables were created for previous math courses taken at MSU where a value of 1 indicates the 
student had previously taken the given course that was counted as a prerequisite for Stat 216 and earned a 
grade of C or higher and a 0 indicates that either the student did not take the course or took the course but 
did not earn a grade of C or higher. [Note, these are not mutually exclusive categories and all nine 
variables were included in the analysis.]Three more (non-exclusive) indicator variables were created for 
three standardized tests that students may use to meet the prerequisites for Stat 216 (ACT, SAT, and the 
Mathematics Placement Exam (MPLEX)—an exam administered at MSU to place students in the 
appropriate math course). A value of 1 indicates that the student took the exam and met or exceeded the 
required score to use the standardized exam to satisfy Stat 216 prerequisites (ACT score of 23 or higher, 
SAT score of 540 or higher, and MPLEX score of 3.5 or higher) whereas a value of 0 indicates that the 
student either did not take the exam or took the exam and did not earn a score necessary to satisfy the 
prerequisites for Stat 216.  
 
2.4.  STATISTICAL ANALYSIS 

 
We first calculated summary statistics of the student, classroom, and course characteristics using the 

data provided from the Office of the Registrar (n = 3,491). To assess the effect of curriculum on student 
understanding, a logistic mixed effects model was run for each of the six assessment items, with 
classroom and course characteristics as fixed effects, and instructor as a random effect (n = 3,612). To 
examine the impact of curriculum on success rates, a logistic mixed effects model was run, which 
included student, classroom, and course characteristics as fixed effects, and instructor as a random effect 
(n = 3,491). The assumptions for these analyses were evaluated and were reasonably satisfied. All 
analyses were conducted using SAS 9.4. When reporting our results, we report point estimates and 95% 
confidence intervals where warranted. We chose to use a multiple comparisons adjustment only when 
comparing across curricula as this is the focus of this paper. We believe that the emphasis of the analysis 
should be on the estimated effects (practical significance) of the curricula and not statistical significance. 
This allows us to meet the overall objective of the paper, which is to compare the curricula and examine 
how our results compare to previous results. 
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3. RESULTS 
 
3.1.  SUMMARY STATISTICS 

 
Summary statistics of the student, classroom, and course characteristics are provided in Table A1 of 

the appendix. Means and standard deviations are presented for quantitative variables and counts and 
percentages are provided for categorical variables. These summary statistics indicate that a majority of 
Stat 216 students are sophomores, many of whom met the prerequisites for the course by their score on 
the ACT. The average GPA for the students in our analysis is 2.99 with a standard deviation of 0.72.  
 
3.2. STUDENT UNDERSTANDING 

 
For each section, the number of students answering a given question correctly and incorrectly were 

reported. Data were not provided for two out of the 116 different sections. In those 114 sections for which 
data are available, information from 3,612 students is available.  

Table 1 displays the percentage of students correctly answering the six questions corresponding to 
CAOS items for each curriculum and the corresponding chi-square statistic and p-value under the null 
hypothesis that the proportion of students answering the question correctly is the same across all four 
curricula (all tests are based on 3 df). The number of students taught under each curriculum is provided in 
parentheses and, for each question, the bold font indicates the curriculum with the highest proportion of 
students answering the question correctly. Results indicate that for all questions there are differences 
across the curricula. Interestingly, the curriculum with the highest proportion correct depends on the item, 
suggesting that there is no one curriculum that is “best” in helping students understand these concepts.  
 

Table 1. Proportion correct for six CAOS items by curriculum 
 

 DVB 
(n = 84) 

CATALST 
(n = 770) 

Lock 
(n = 758) 

MSU 
(n = 1500) 

Total 
(n = 3612) 

2  
(df = 3) 

p-value 

Purpose of 
randomization 

37.91 74.29 57.12 66.27 61.50 210.62 <0.0001 

Association is 
not causation 

75.59 69.35 71.24 74.67 72.97 10.52 0.0146 

No effect vs.  
insignificant 

73.5 82.18 88.52 81.93 82 50.49 <0.0001 

Interpretation of 
p-value 

70.72 82.08 83.77 62.4 72.43 161.14 <0.0001 

Interpretation of 
Conf Intervals 

93.49 94.16 87.2 92.67 91.97 31.13 <0.0001 

Inference to 
population 

74.32 87.01 90.63 87.67 86 83.87 <0.0001 

 
We next fit mixed logistic regression models for each item with classroom and course 

characteristics including curriculum, room type, days of the week the course meets, semester, and year, 
included as fixed effects, and instructor as a random effect. Because the data were collected at the section 
level it is not possible to include student characteristics in this analysis. A separate model was fit for each 
item. The estimated odds ratios and associated 95% confidence intervals associated with the fixed effects 
in the logistic mixed models are found in Tables 2 and 3. Odds ratios greater than 1 indicate that the odds 
of correctly answering a question are greater for students in the given group compared to the reference 
group. For example, the estimated odds ratio associated with the CATALST curriculum for the item on 
the purpose of randomization is 2.56, which indicates that after controlling for the other variables in the 
model, the odds of a student taught using the CATALST curriculum answering this question correctly is 
estimated to be 2.56 times larger than the odds of a student taught under the MSU curriculum answering 
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the question correctly. Odds ratios less than 1 indicate that the odds of correctly answering a question are 
lower for students in the given level compared to the reference group. For example, the estimated odds 
ratio associated with the consensus (DVB) curriculum for the item on the purpose of randomization is 
0.56 indicating that the odds of a student taught under the DVB curriculum answering the question 
correctly after controlling for the other variables in the model is estimated to be 0.56 times the odds of a 
student taught under the MSU curriculum answering the question correctly. Odds ratios whose 
corresponding confidence intervals do not contain 1 are denoted with an asterisk. 
 The results from this analysis indicate a relationship between student understanding and classroom 
and course characteristics that differs by item. For example, the results from understanding the purpose of 
randomization in an experiment indicate that students taught in TEAL classrooms are less likely to 
answer that item correctly than students in a traditional classroom (see Table 2) whereas the opposite is 
true for interpretation of a p-value controlling for the other course and classroom characteristics (see 
Table 3). These results suggest that student understanding of particular statistical concepts depends on 
more than just the curriculum and that the effect of a given factor depends on the concept of interest. The 
effect of instructor depends on the concept of interest (respectively, lack of statistical significance does 
not guarantee that there is no effect: 2(1) = 1.49, p-value = 0.11; ability to identify correct and incorrect 
interpretations of a confidence interval: 2(1) = 0.28 p-value = 0.30; purpose of randomization: 2(1) = 
3.71, p-value = 0.03; identifying correlation does not imply causation: 2(1) = 3.72, p-value = 0.03; 
interpreting p-values: 2(1) = 8.95, p-value < 0.01; identify factors that allow inference to the population: 
2(1) = 9.27, p-value < 0.01). 
 
Table 2. Estimated odds ratios and 95% CIs for first three items (purpose of randomization, correlation 

does not imply causation, and lack of statistical significance does not guarantee no effect) 
 

 Purpose of Randomization Association is not 
causation 

No effect vs. Not 
significant 

 Odds Ratio (CI) Odds Ratio (CI) Odds Ratio (CI) 
Curriculum 
  CAT 
  DVB 
  Lock 
  MSU 

 
2.56 (1.58, 4.17)* 
0.56 (0.31, 1.00) 
0.89 (0.59, 1.33) 
1.00 [reference] 

 
0.89 (0.54, 1.47) 
1.66 (0.90, 2.07) 
0.95 (0.63, 1.44) 
1.00 [reference] 

 
0.71 (0.38, 1.35) 
0.55 (0.26, 1.14) 
1.56 (0.95, 2.58) 
1.00 [reference] 

Room 
  TEAL 
  Regular 

 
0.73 (0.54, 0.99)* 
1.00 [reference] 

 
0.91 (0.65, 1.27) 
1.00 [reference] 

 
1.20 (0.85, 1.69) 
1.00 [reference] 

Year 
  2013 
  2014 
  2015 
  2016 

 
0.41 (0.19, 0.88)* 
0.58 (0.33, 1.02) 
0.91 (0.68, 1.22) 
1.00 [reference] 

 
0.29 (0.13, 0.63)* 
0.50 (0.28, 0.90)* 
0.45 (0.33, 0.62)* 
1.00 [reference] 

 
1.23 (0.48, 3.17) 
1.44 (0.69, 2.99) 
1.01 (0.70, 1.45) 
1.00 [reference] 

Term 
  Fall 
  Spring 

 
0.91 (0.72, 1.15) 
1.00 [reference] 

 
1.75 (1.38, 2.21)* 
1.00 [reference] 

 
0.96 (0.72, 1.28) 
1.00 [reference] 

Day 
  MWF 
  TR 

 
0.80 (0.58, 1.09) 
1.00 [reference] 

 
0.85 (0.57, 1.20) 
1.00 [reference] 

 
0.93 (0.64, 1.33) 
1.00 [reference] 

Note. All variables reported were treated as fixed effects and instructor effect was included as a random effect 
*denotes odds ratios statistically different than 1 at the 0.05 significance level 
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Table 3. Estimated odds ratios and 95% CIs for last three items (interpreting p-values, interpreting 
confidence intervals, and identifying factors that allow inference to the population) 

 
 Interpreting p-values Interpreting Confidence 

Intervals 
Factors that allow 

generalization 
 Odds Ratio (CI) Odds Ratio (CI) Odds Ratio (CI) 
Curriculum 
  CAT 
  DVB 
  Lock 
  MSU 

 
1.25 (0.69, 2.26) 
0.52 (0.25, 1.05) 
1.78 (1.10, 2.90)* 
1.00 [reference] 

 
1.14 (0.50, 2.56) 
1.08 (0.39, 2.94) 
0.37 (0.19, 0.71)* 
1.00 [reference] 

 
1.35 (0.63, 2.89) 
0.64 (0.26, 1.56) 
1.92 (1.01, 3.63)* 
1.00 [reference] 

Room 
  TEAL 
  Regular 

 
1.61 (1.17, 2.22)* 
1.00 [reference] 

 
0.99 (0.57, 1.73) 
1.00 [reference] 

 
1.06 (0.70, 1.59) 
1.00 [reference] 

Year 
  2013 
  2014 
  2015 
  2016 

 
6.89 (2.82, 16.85)* 
4.16 (2.10, 8.23)* 
2.27 (1.65, 3.11)* 
1.00 [reference] 

 
0.98 (0.26, 3.67) 
1.77 (0.69, 4.51) 
1.34 (0.80, 2.25) 
1.00 [reference] 

 
0.58 (0.19, 1.79) 
0.58 (0.24, 1.38) 
0.80 (0.52, 1.23) 
1.00 [reference] 

Term 
  Fall 
  Spring 

 
0.53 (0.41, 0.70)* 
1.00 [reference] 

 
1.00 (0.65, 1.53) 
1.00 [reference] 

 
1.05 (0.75, 1.46) 
1.00 [reference] 

Day 
  MWF 
  TR 

 
1.39 (0.98, 1.96) 
1.00 [reference] 

 
1.24 (0.70, 2.19) 
1.00 [reference] 

 
1.02 (0.65, 1.60) 
1.00 [reference] 

Note. All variables reported were treated as fixed effects and instructor effect was included as a random effect 
*denotes odds ratios statistically different than 1 at the 0.05 significance level 
 

To better compare curricula, we constructed Tukey-Kramer adjusted 95% confidence intervals using 
the estimates from the mixed logistic regression models for each pair of curricula for each item as 
displayed in Tables 4 and 5 with significantly different pairs denoted by an asterisk. These results are 
similar to the results found by Tintle and his colleagues (Tintle et al., 2011; Tintle et al., 2012) in that 
student understanding under simulation-based curricula is similar to or better than student understanding 
under a consensus curriculum. These results indicate that there are differences in student understanding 
among the simulation-based curricula and that the relationship depends on the concept of interest. These 
results suggest that certain simulation-based curricula are better suited at teaching a given concept and 
that there is no one “best” curriculum. This is not surprisingly as each curriculum emphasizes different 
concepts and presents them in different ways which can lead to differences in student understanding. For 
example, for the question on the purpose of randomization in an experiment a higher proportion of  
 

Table 4. Tukey-Kramer adjusted 95% confidence intervals of odds ratios comparing student 
understanding by curricula for first three items  

 
 Purpose of Randomization Association is not 

causation 
Not effect vs. Not Significant 

DVB-CAT (0.14, 0.35)* (1.12, 3.09)* (0.46, 1.28)* 
DVB-Lock (0.39, 1.01)*  (1.04, 2.95)* (0.19, 0.63)* 
DVB-MSU (0.26, 1.20)* (0.74, 3.71)* (0.21, 1.43)* 
Lock-CAT (0.22, 0.54)* (0.66, 1.73)* (1.23, 3.90)* 
Lock-MSU (0.52, 1.50)* (0.55, 1.64)* (0.81, 3.02)* 
MSU-CAT (0.21, 0.74)* (0.58, 2.16)* (0.61, 3.24)* 
Note. Estimates were obtained from a model where classroom and course characteristics were fixed effects and 
instructor was a random effect 
*denotes statistically significant different pairs at the 0.05 significance level 
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Table 5. Tukey-Kramer adjusted 95% confidence intervals of odds ratios comparing student 
understanding by curricula for last three items  

 
 

Interpreting p-values 
Interpreting Confidence 

Intervals 
Factors that allow 

generalization 
DVB-CAT (0.24, 0.71)* (0.40, 2.23) (0.24, 0.91)* 
DVB-Lock (0.16, 0.52)* (1.20, 7.00)* (0.17, 0.66)* 
DVB-MSU (0.20, 1.32) (0.29, 4.02) (0.20, 2.05) 
Lock-CAT (0.84, 2.42) (0.05, 0.73)* (0.73, 2.77) 
Lock-MSU (0.94, 3.38) (0.16, 0.87)* (0.83, 4.43) 
MSU-CAT (0.37, 1.75) (0.30, 2.56) (0.27, 2.01) 
Note. Estimates were obtained from a model where classroom and course characteristics were fixed effects and 
instructor was a random effect 
*denotes statistically significant different pairs at the 0.05 significance level 

 
students taught with the CATALST curriculum answered the question correctly than students taught using 
any of the other three curricula and the proportions of students answering this question correctly in the 
non-CATALST curricula were similar. For the question on recognizing that lack of statistical significance 
does not guarantee no effect a higher proportion of students taught under the Lock and MSU curricula 
answered the question correctly than students taught under the CATALST or consensus curricula.  

 
3.3. STUDENT SUCCESS 

 
For the analysis of student success, we used student-level data from the Office of the Registrar. We 

included undergraduate students attempting the course for the first time and not receiving an incomplete 
(I) grade for a sample size of 3,491 students. It is important to note that this sample of students is not the 
same as the sample of students used in the analysis of student understanding. In the analysis of student 
success we have student-level information available allowing us to exclude students repeating the course 
while including students who withdrew from the course. Consequently, the same students are not 
included in both analyses so comparing results from the two analyses must be done cautiously.  
Of interest in this analysis is the relationship between curriculum and success rates, as displayed in Table 
6. For each curriculum, the number and percentage of students successful and not successful in the course 
are reported. Most noticeable is that the success rate is higher for both the MSU and the  
CATALST curricula, which both have success rates over 81%, compared to the DVB and Lock  
curricula which have success rates below 75%. A chi-square test of independence (= 52.584, p- 
value < 0.0001) suggests that there is a relationship between success rates and curriculum, though it does 
not account for other potential causes and thus should be interpreted with caution. 
 

Table 6. Success rates by curriculum 
 

Curriculum Non-Success Success 
n (%) n (%) 

CATALST 98 (14.0) 601 (86.0) 
DVB 158 (28.6) 395 (71.4) 
Lock 193 (25.1) 575 (74.9) 
MSU 275 (18.7) 1196 (81.3) 
Total 724 (20.7) 2767 (79.3) 

 
We then fit a mixed logistic regression model with student characteristics (GPA, class standing, math 

course history, standardized exam history) and classroom and course characteristics (curriculum, room 
type, time and days of the week the course meets, semester, and year) included as fixed effects and 
instructor is treated as a random effect. Estimated odds ratios and the associated 95% confidence intervals 
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of the fixed effects for the logistic mixed effects model are presented in Table 7 with odds ratios 
significantly different than 1 at the 5% significance level denoted by an asterisk. Estimated odds ratios 
greater than 1 indicate that the odds of success are greater for students in the given group than compared 
to the reference group while the opposite is true for estimated odds ratios of less than 1. Of note is that 
GPA, not surprisingly, has a considerable impact on student success rates with an estimated odds ratio of 
13.111 with a 95% confidence interval of 10.551 to 16.290. Class standing is also related to success rates 
with subsequent analyses (not shown) indicating that juniors are more likely to be successful in the course  
 

Table 7. Estimated odds ratios and 95% CIs of the fixed effects for student success 
 

Variable Odds Ratio (CI) 
GPA 13.11(10.55, 16.29)* 
Class 
  Freshman 
  Sophomore 
  Junior 
  Senior 

 
0.65 (0.40, 1.06) 
0.67 (0.45, 1.00) 
1.18 (0.77, 1.82) 
1.00 [reference] 

Math History Prerequisites 
  College Algebra (M121) 
  Math for the Liberal Arts (M145) 
  Language of Mathematics (M147) 
  Secrets of the Infinite (M149) 
  Precalculus (M151) 
  Survey of Calculus (M161) 
  Calculus for Technology I (M165) 
  Calculus for Technology II M166 
  Calculus 1 (M171) or higher 

 
0.74 (0.57, 0.95)* 
0.58 (0.38, 0.88)* 
1.50 (0.95, 2.35) 
0.62 (0.23, 1.67) 

0.05 (0.00, 0.88)* 
1.21 (0.92, 1.59) 
2.35 (0.58, 9.46) 
2.26 (0.57, 8.96) 
1.17 (0.78, 1.75) 

Standardized Test Prerequisites 
  SAT 
  ACT 
  MPLEX 

 
1.00 (0.76, 1.33) 

1.56 (1.23, 1.99)* 
0.97 (0.67, 1.41) 

Curriculum 
  CAT 
  DVB 
  Lock 
  MSU 

 
2.70 (0.92, 4.64) 
1.52 (0.55, 4.25) 
0.72 (0.38, 1.37) 
1.00 [reference] 

Room 
  TEAL 
  Regular 

 
1.73 (0.96, 3.10) 
1.00 [reference] 

Days of the Week 
  MWF 
  TR 

 
1.60 (0.89, 2.87) 
1.00 [reference] 

Year 
  2013 
  2014 
  2015 
  2016 

 
0.46 (0.13, 1.60) 
0.87 (0.35, 2.14) 
0.83 (0.51, 1.34) 
1.00 [reference] 

Term 
  Fall 
  Spring 

 
1.44 (0.96, 2.17) 
1.00 [reference] 

Time 
  Afternoon 
  Morning 

 
0.74 (0.57, 0.98)* 
1.00 [reference] 

Note. All variables reported were treated as fixed effects and instructor effect was included as a random effect 
*denotes an odds ratio statistically different than 1 at the 0.05 significance level 
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than sophomores. There was also a strong instructor effect (= 36.96, p-value < 0.0001) which is not 
shown in Table 6.  

The indicators of student prerequisite checks for math history, and standardized tests reveal several 
unexpected results. Notably, the odds ratios for the indicators for College Algebra (M121), Math for the 
Liberal Arts (M145), and Precalculus (M151) are less than 1 with associated confidence intervals not 
containing 1 indicating that students that have completed these courses successfully are less likely to 
successfully complete Stat 216 compared to students that either did not take the course or did not 
successfully complete it. These results must be viewed as conditional on the other variables in the model 
including GPA and standardized test prerequisite checks, which all are measuring similar concepts and 
may explain the unexpected results. Further, students who used ACT to satisfy the prerequisite for the 
course were more likely to be successful in part because they entered college with strong enough math 
skills to test out of the 100 level math prerequisites, which may contribute to the unexpected estimated 
odds ratios. Several of the classroom characteristics including type of room, term, year, and days of the 
week are not useful in predicting success (given the other terms in the model) though we see a small 
effect for time of day the course meets. 

To further explore the impact of curriculum on success rates, 95% Tukey-Kramer adjusted confidence 
intervals of success rates between curricula calculated from the estimated model were constructed and are 
displayed in Table 8 with statistically significant different pairs denoted with an asterisk. Only one 
confidence interval does not contain 1—the comparison of Lock and CATALST which indicates that 
success rates are lower for students under the Lock curriculum than the CATALST curriculum. Though 
these results are not as dramatic as those shown in Table 6, the results still suggest that the differences in 
success rates across curricula are small and that the use of simulation-based curriculum is not detrimental 
to students’ success in Stat 216. 

 
Table 8. Tukey-Kramer adjusted 95% confidence intervals of odds ratios  

comparing success rates by curricula 
 

Curricula Confidence Interval 
DVB-CAT (0.29, 1.84) 
DVB-Lock (0.89, 5.03) 
DVB-MSU (0.40, 5.47) 
Lock-CAT (0.16, 0.76)* 
Lock-MSU (0.31, 1.67) 
MSU-CAT (0.17, 1.39) 

 
4. DISCUSSION  

 
This study reports the results of an analysis comparing student success rates and student 

understanding across four different curricula that were implemented from fall 2013 through spring 2016 
at Montana State University. During this time, we used a consensus curriculum (De Veaux, Velleman, & 
Bock, 2008), the CATALST curriculum, a curriculum based on Lock et al. (2012), and the MSU 
curriculum. When comparing student understanding by curriculum there are pronounced differences. 
When not controlling for other covariates, we note that there are considerable differences in student 
understanding by curriculum and that no one curriculum outperforms the others. When including 
classroom and course characteristics using a logistic mixed effects model, these differences become 
slightly less pronounced. We notice that for all items, student understanding under a simulation-based 
curriculum is similar to or better than student understanding under the consensus curriculum. How the 
three simulation-based curricula compare depends on the statistical concept. Specifically, for the question 
on the purpose of randomization, students taught under the CATALST curriculum were more likely to 
correctly answer this question than students taught with any of the other three curricula. For the question 
on identifying that correlation does not imply causation students taught using the consensus (DVB) 
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curriculum were more likely to correctly answer this question than students taught using the CATALST 
or Lock curricula. Conversely, students taught using the consensus (DVB) curriculum were less likely to 
answer the questions on interpreting p-values and identifying factors that allow for inference to the 
population than students from the CATALST and Lock curricula. These results also indicate that students 
taught using the Lock curriculum were more likely to correctly answer the question on recognizing that 
lack of statistical significance does not guarantee no effect than students in the CATALST and consensus 
(DVB) curricula whereas for the question on interpreting confidence intervals students using the Lock 
curriculum were less likely to correctly answer this question than students taught under the other three 
curricula.  

When comparing success rates between curricula, student success rates under the CATALST and 
MSU curricula are nearly 10 percentage points higher than the success rates for students under the 
consensus and Lock curricula. When including student level and classroom level covariates in the 
analysis via a logistic mixed effects model, the effect of curriculum is greatly reduced. Based on Tukey-
Kramer adjusted 95% confidence intervals, only one pair of curricula—CATALST versus Lock—had a 
confidence interval of odds ratios which did not contain 1. The results suggest that the probability of 
successfully completing the course is higher under the CATALST curriculum than the Lock curriculum 
though differences in student success rates by curriculum are small.  

The results of this study add to and broaden the existing body of literature on simulation-based 
curricula in introductory statistics courses. One question raised by Tintle (2014) was the transferability of 
the findings in previous studies to different institutions. This study was conducted at a university of 
around 16,000 students and involved all introductory statistics instructors at the institution allowing for a 
better understanding of the effectiveness of simulation-based curricula at an institution that differs 
considerably from the institution in the seminal papers. Our results are consistent with the findings from 
those initial papers (Tintle et al., 2011; Tintle et al., 2012) in that under a simulation-based curriculum, 
student understanding is similar to or better than what is observed under a consensus curriculum. Our 
results are also able to provide further insights into differences among different simulation-based 
curricula. This study indicates that differences in student understanding among the three simulation-based 
curricula depends on the concept of interest.  

 
4.1.  LIMITATIONS 

 
The findings of this study need to be interpreted thoughtfully as there are several limitations to the 

study. One potential limitation is that the data available to us was somewhat limited. In the analysis of 
student understanding, we were unable to include student information because the data were collected at 
the section level, not the student level. Additionally, for this analysis we only evaluated six concepts. 
Though we feel that these six concepts are fundamental concepts in introductory statistics, there are other 
concepts that may be of interest that were not evaluated. In the analysis of student success we had limited 
student information available and potentially important student level characteristics such as gender, 
socioeconomic status, and attitudes towards statistics are not available. For both analyses, instructor 
characteristics, such as teaching experience, were not available to us. Despite the limitations of the data, 
this analysis does further the understanding of the effectiveness of simulation-based curricula and 
provides a comparison of different simulation-based curricula on student understanding of several 
statistical concepts. 

For both analyses, there are issues with confounding that we were unable to avoid when 
implementing the curricula. From fall 2013 through spring 2015, sections taught using the consensus 
curriculum were taught on MWF in traditional classrooms while sections taught using simulation-based 
curricula were taught on TR in TEAL classrooms making it difficult to disentangle the separate effects of 
classroom, curriculum, and days of the week the course was taught. Further, the CATALST and MSU 
curricula are activity-based while the Lock and consensus curricula were taught primarily through lecture. 
It is important to take this into account, as differences among curricula may be associated with whether or 
not active learning was implemented. Lastly, under the MSU curriculum we implemented the use of a 
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‘helper,’ an upper-level undergraduate or first-year graduate student in statistics, who attended class and 
interacted with each group. The presence of this helper cannot be controlled for in the analysis as the 
helper usually was assigned to one section which leads to confounding of the instructor and helper and the 
presence of a helper is also confounded with the MSU curriculum. 

One concern we have when comparing the curricula is using the CATALST curriculum. This 
curriculum was designed to be a terminal course in statistics whereas the other three curricula are not. 
This leads to different learning goals and consequently the use of different assessments for the CATALST 
curriculum. This makes comparisons to the CATALST curriculum questionable as it is not an ‘apples to 
apples’ comparison. We believe that comparisons among the other three curricula are reasonable to make 
as the same (or very similar) assessments were used and were graded in the same manner by an 
overlapping group of instructors. When taking this into consideration we can conclude from the results 
that there is no evidence that the newer curricula have reduced student success rates. 
 
4.2.  IMPLICATIONS FOR RESEARCH  

 
Based on the findings and limitations in this study, there are several potential implications for 

research. Because the initial studies of Tintle et al. (2011, 2012) were conducted at a small liberal arts 
college, questions have been raised about the generalizability of the results in these papers in that students 
taught under simulation-based curricula perform similar to or better than students taught using the 
consensus curriculum. The results of our analysis are consistent with the results found in Tintle et al. and 
in Chance, Wong, & Tintle (2017), providing some evidence of the generalizability of these results. To 
further provide evidence of the generalizability of these findings, it is crucial for other institutions to 
conduct similar studies if possible. This would allow for greater information regarding the suitability of 
using simulation-based methods for different student populations and types of institutions. The limitations 
in this study provide insight regarding how to conduct the study and what data to collect in future studies. 
Having experienced confounding of curriculum with classroom type, days of the week, and the use of 
active learning, we recommend that others avoid this so that better estimates of the impacts of simulation-
based curricula can be obtained. We also recommend that, if possible, more data be collected from the 
students including demographic information such as gender, measures of student ability, and measures of 
student attitudes towards statistics both before and after the course. Due to the retrospective nature of this 
study we were unable to collect this information from students. The inclusion of these variables is of 
interest and would provide useful information to statistics educators. Lastly, we also recommend that 
careful consideration be made about how student understanding is evaluated. The six concepts we 
evaluated are fundamental concepts in introductory statistics but are not the only concepts taught in the 
course and are not the only concepts measured by the CAOS instrument. The inclusion of more questions 
to assess additional concepts would provide further insight on the efficacy of simulation-based curricula.  

 
4.3.  IMPLICATIONS FOR TEACHING 

 
With the implementation of a simulation-based curriculum there are three major aspects of the course 

we have changed: the topics chosen and the ordering of topics, the use of web apps, and the use of group 
activities. Individual instructors may have different views of the importance of these three aspects, but our 
collective opinion is that these changes have been beneficial to students. The use of the technology allows 
students to interact with the concepts thereby enhancing their understanding. We also have reordered the 
topics dramatically compared to the ordering of topics in the consensus curriculum. The use of 
randomization allows for the introduction of inference in the first week of class rather than waiting until 
the second half of the course as we did with the consensus curriculum. We are then able to reinforce the 
ideas of p-value and confidence interval interpretations throughout the course, which helps to improve 
student understanding of these key statistical concepts. 

Based on our experiences, we note that it is important that the instructor carefully monitor the 
students during group activities as it is not uncommon for a group to come to the wrong conclusion. We 
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have found it beneficial to have a second observer in each class to interact with each group and to ensure 
that all learn the lesson as planned. We been able to hire undergraduate teaching assistants who act as 
assistant instructors and allow greater interaction between teachers and students.  

We encourage others to try the innovative approaches introduced by simulation-based curricula as we 
have noticed an enriched experience for students. We have noticed that discussions can reach a greater 
depth due to the use of group activities leading to deeper understanding. One area that we have noticed 
improved understanding is limitations of statistical inference and how study design can inhibit the scope 
of inference. We have also noticed a major change due to the use of groups is that students are held 
individually accountable. We do see improvements in attendance when students are assigned to groups 
and when they must work with their group each class period. Overall we have found the use of 
simulation-based curricula highly beneficial to our students and will continue to use and refine this 
curriculum in order to improve student learning. 
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APPENDIX A: SUMMARY STATISTICS FOR STUDENT,  
CLASSROOM, AND COURSE CHARACTERISTICS 

 
Table A1: Summary statistics for student, classroom, and course characteristics 

 
Variable n % 
Class Standing 
  Freshman 
  Sophomore 
  Junior 
  Senior 

 
583 
1676 
891 
341 

 
16.70 
48.01 
25.52 
9.77 

Standardized Test Prerequisitesa  
  SAT 
  ACT 
  MPLEX 

 
823 
1871 
341 

 
23.57 
53.59 
9.77 

Math History Prerequisitesa 
  College Algebra (M121) 
  Math for the Liberal Arts (M145) 
  Language of Mathematics (M147) 
  Secrets of the Infinite (M149) 
  Precalculus (M151) 
  Survey of Calculus (M161) 
  Calculus for Technology I (M165) 
  Calculus for Technology II M166 
  Calculus I (M171) or higher 

 
964 
192 
283 
35 
2 

753 
63 
70 

464 

 
27.61 
5.50 
8.11 
1.00 
0.06 
21.57 
1.80 
2.01 
13.29 

Type of Room 
  TEAL 
  Regular 

 
1613 
1878 

 
46.20 
53.80 

Curriculum 
  CATALST 
  DVB 
  LOCK 
  MSU 

 
699 
553 
768 
1471 

 
20.02 
15.84 
22.00 
42.14 

Time of Day 
  Morning 
  Afternoon 

 
1706 
1785 

 
48.87 
51.13 

Days of the Week 
  MWF 
  TR 

 
2012 
1479 

 
57.63 
42.37 

Year 
  2013 
  2014 
  2015 
  2016 

 
589 
1165 
1195 
542 

 
16.87 
33.37 
34.23 
15.53 

Term 
  Fall 
  Spring 

 
2003 
1488 

 
57.38 
42.62 

GPA M  =  2.992 SD = 0.715 
aPercentages for these two variables do not sum to 100% as students can take no or multiple standardized tests 
or have taken none or multiple prerequisite courses. 

 
 


