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ABSTRACT 

 

In recent years, there have been calls for researchers to report and interpret confidence intervals 

(CIs) rather than relying solely on p-values. Such reforms, however, may be hindered by a general 

lack of understanding of CIs and how to interpret them. In this study, we assessed conceptual 

knowledge of CIs in undergraduate and graduate psychology students. CIs were difficult and prone 

to misconceptions for both groups. Connecting CIs to estimation and sample mean concepts was 

associated with greater conceptual knowledge of CIs. Connecting CIs to null hypothesis 

significance testing, however, was not associated with conceptual knowledge of CIs. It may 

therefore be beneficial to focus on estimation and sample mean concepts in instruction about CIs.  
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1. INTRODUCTION 

 

1.1. CONCEPTUAL KNOWLEDGE OF STATISTICS 

 

Reforms in statistics education have highlighted the importance of improving statistical 

reasoning—defined as “the way people reason with statistical ideas and make sense of statistical 

information” (e.g., Garfield & Chance, 2000, p. 101). One component of statistical reasoning is 

understanding important concepts (e.g., Garfield, 2003). In fact, some have asserted that improving 

statistical reasoning will require a shift towards more conceptual learning and away from rote 

memorization and computation (e.g., Moore, 1997). Here, we use the term conceptual knowledge to 

refer to understanding of general principles and relationships, one of the forms of conceptual knowledge 

identified in a recent review (Crooks & Alibali, 2014). Conceptual knowledge of statistics is thought to 

include an understanding of the why of statistics in addition to the how.  

Many studies have argued for the importance of conceptual knowledge in statistics. Conceptual 

knowledge is thought to allow students to think more flexibly (e.g., Jones, Jones, & Vermette, 2011), 

transfer knowledge to novel problems (e.g., Bude, Imbos, van de Wiel, & Berger, 2011; Bude, van de 

Wiel, Imbos, & Berger, 2010; Paas, 1992), decide what type of analysis to use (e.g., Bude et al., 2010; 

Bude et al., 2011; Graham & Thomas, 2005), represent information accurately (e.g., Graham & 

Thomas, 2005; Hong & O’Neil, 1992), make accurate comparative judgments (Bisson, Gilmore, Inglis, 

& Jones, 2016), understand data (e.g., Garfield & Chance, 2000; Jones et al., 2011), interpret results 

(e.g., Gal & Garfield, 1997; Jones et al., 2011), and think critically (e.g., Garfield & Chance, 2000). 

Unfortunately, however, many traditional statistics classes do not typically promote a high level of 

conceptual knowledge (delMas, Garfield, Ooms, & Chance, 2007; Meletiou-Mavrotheris & Lee, 2002; 
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Pfannkuch, Wild, & Parsonage, 2012), and, more generally, learning concepts tends to be more 

challenging than learning procedures (Leppink, Broers, Imbos, van der Vleuten, & Berger, 2012). 

In our view, learning statistics involves building on existing knowledge structures, as well as 

acquiring new knowledge via instruction or experience. Learners sometimes adapt their existing 

knowledge structures in ways that are inaccurate, but that may be functional, at least in some contexts 

(see, e.g., Smith, diSessa, & Roschelle, 1994). From this perspective, it is critical to understand both 

whether students have accurate conceptual knowledge and also whether they hold flawed, inaccurate, 

or incomplete conceptions, which we will refer to using the umbrella term, misconceptions.  

In light of the value of conceptual knowledge in statistics, there is a need for research focusing on 

statistical topics for which conceptual difficulties are particularly widespread. Specifically, there is a 

need for research illuminating what exactly students know about conceptually difficult statistical topics 

and how statistics lessons can be structured to foster conceptual knowledge of such topics. 

 

1.2. CONFIDENCE INTERVALS 

 

In recent years, researchers have been encouraged to decrease their reliance on significance testing 

and p-values, and to focus more on estimation and practical significance (e.g., Cumming, Fidler, 

Kalinowski, & Lai, 2012; Cumming & Fidler, 2009). Indeed, the American Statistical Association 

recently released a statement acknowledging the misuse of p-values, discussing principles for their 

appropriate use and interpretation, and acknowledging alternative approaches that emphasize 

estimation rather than testing (ASA, 2016). One step in shifting away from significance testing is 

reporting and interpreting confidence intervals (CIs) in empirical work. In the field of psychology, the 

American Psychological Association (APA) has supported these efforts. In fact, the most recent (sixth) 

edition of the APA publication manual notes that, “because confidence intervals combine information 

on location and precision and can often be used directly to infer significance levels, they are, in general, 

the best reporting strategy” (2010, p. 34). Some journals now recommend that authors report CIs; for 

example, the author guidelines for Psychological Science (the flagship journal of the Association for 

Psychological Science) now “recommend the use of the ‘new statistics’—effect sizes, confidence 

intervals, and meta-analysis—to avoid problems associated with null-hypothesis significance testing” 

(APS, 2017).  

Despite efforts by the APA and by journal editors, there has been little success getting psychological 

researchers to include CIs in their work, and even less success getting them to interpret CIs correctly 

(Cumming, 2014; Cumming et al., 2007; Fidler et al., 2005; Fidler, Thomason, Cumming, Finch, & 

Leeman, 2004). Even in the face of explicit efforts to implement statistical reforms, there has been little 

change in researchers’ practices (Cumming et al., 2007). More specifically, the statistical 

recommendations of the sixth edition of the APA’s publication manual have had a limited impact on 

practice (Cumming et al., 2012). One hypothesis about the resistance to CIs is that many researchers do 

not have a good grasp of their conceptual basis.  

 

1.3. CONCEPTUAL KNOWLEDGE OF CONFIDENCE INTERVALS 

 

Key concepts Conceptual knowledge of CIs involves the ability to accurately interpret the 

calculated interval and to relate it to other statistical concepts. Although there are many statistical 

concepts that relate to CIs in some way, a few specific concepts seem central to deep conceptual 

knowledge of CIs. A review of previous research, statistics textbooks, and video data from statistics 

instruction (Lockwood, Yeo, Crooks, Nathan, & Alibali, 2014) highlights some key concepts that 

appear to be particularly important when thinking about CIs. These concepts include (a) understanding 

the definition of the term “confidence interval,” (b) understanding the distinction between sample and 

population means and how they are related, (c) understanding the notion of confidence level (i.e., 90% 

vs. 95% CI), (d) understanding how various factors (e.g., sample size, sample variability) affect CI 

width, (e) understanding what can be inferred about future replications based on CIs, and (f) 

understanding how to interpret CIs accurately.  

Unfortunately, past work suggests that CI-related concepts are difficult for researchers (e.g., 

Coulson, Healey, Fidler, & Cumming, 2010; Cumming, 2006). Some evidence suggests that CIs are 

difficult for students as well (Henriques, 2016). In developing a broad assessment of conceptual 
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knowledge of statistics, delMas and colleagues (2007) noted that performance by undergraduate 

students on CI items was poor. Given the breadth of their assessment, there were only a small number 

of items that specifically focused on CIs, but the data did reveal participants’ difficulty with CI concepts. 

Specifically, whereas 75% of the undergraduate sample was able to identify a correct interpretation of 

a confidence interval, many of these students endorsed an incorrect interpretation, as well. This suggests 

that these students believed that the correct and incorrect interpretations conveyed similar ideas, which 

is inaccurate. Furthermore, the majority of students in the sample demonstrated misconceptions about 

CIs, even after taking an introductory statistics course. Additionally, there is anecdotal evidence from 

instructors noting that CIs are a particularly difficult topic for students (Holte, 2003). Taken together, 

data from both advanced researchers and beginning statistics students suggest that understanding the 

conceptual basis of CIs presents a challenge. 

 

Common misconceptions Understanding CIs involves not only knowledge of concepts, but also the 

absence of misconceptions. In this paper we use the term “misconceptions” to refer to incomplete or 

flawed conceptions that may nevertheless be functional or useful in some contexts (see Smith et al., 

1994, for discussion). Several distinct misconceptions have been identified in previous research (Castro 

Sotos, Vanhoof, Van den Noortgate, & Onghena, 2007; Cumming & Maillardet, 2006; Fidler, 2006; 

Grant & Nathan, 2008; Greenland et al., 2016; Henriques, 2016); we focus here on five key 

misconceptions (Table 1). Specifically, the Sample Mean Misconception is the belief that a CI allows 

one to estimate the sample mean. The Confidence Level Misconception is the belief that the confidence 

level of a calculated interval indicates the percentage of replication means that will fall within the 

original interval. The Individual Scores Misconception is the belief that a CI gives the range of 

individual scores. The Fixed Interval Misconception is the belief that a CI is a fixed interval, within 

which a moving parameter may or may not fall. Finally, the Equality Misconception is the belief that a 

CI gives the likelihood of the sample mean being equal to the population mean.  

 

Table 1. CI misconceptions 

 
Misconception Source Explanation 

Sample Mean (SM) Castro Sotos et al. 

(2007); Fidler (2006) 

A CI allows one to estimate the sample mean 

Confidence Level (CL) Castro Sotos et al. 

(2007); Cumming & 

Maillardet (2006) 

The confidence level of a calculated interval 

indicates the percentage of replication means that 

will fall within the original interval; e.g., a 95% 

interval calculated from a set of data will include 

95% of the sample means from all replications 

Individual Scores (IS) Castro Sotos et al. 

(2007); Fidler (2006) 

A CI gives the range of individual scores; a CI gives 

the range of individual scores within some margin 

of error (e.g., 1 SD) 

Fixed Interval (FI) Grant & Nathan 

(2008) 

A CI is a fixed interval, within which a moving 

parameter may or may not fall 

Equality (EQ) Fidler (2006) A CI gives the likelihood of the sample mean being 

equal to the population mean 

 

Past research has documented misconceptions about CIs in a range of populations, including 

researchers (e.g., Cumming, Williams, & Fidler, 2004; Hoekstra, Rouder, Morey & Wagenmakers, 

2014), graduate students (e.g., Grant & Nathan, 2008; Hoekstra et al., 2014), and undergraduates (e.g., 

Fidler, 2006; Henriques, 2016; Reaburn, 2014). For example, in a study of researchers in a number of 

fields (including psychology), Cumming and colleagues (2004) asked participants to predict what 

would happen if the study were replicated. Performance was poor and riddled with misconceptions, 

even for participants who were actively publishing in fields in which reporting CIs is the norm (e.g., 

medicine). Researchers commonly underestimated the degree to which a parameter in a replication 

would vary from its originally reported value. In another study that included researchers, master’s 

students, and undergraduates in psychology, Hoekstra and colleagues (2014) asked participants to 
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indicate whether each of a set of false statements about CIs was true or false. In each of the three 

participant groups, participants endorsed more than half of the false statements, on average.  

 

Interpreting confidence intervals CIs allow for two types of statistical inference: specifically, they 

can be used for both estimation and hypothesis testing. Deep conceptual knowledge of CIs involves the 

ability to use CIs for both estimation and hypothesis testing, as it is precisely this potential for inference 

that makes CIs so useful (e.g., APA, 2010). Although confidence intervals allow for testing any 

hypothesis about the relevant population parameter, we focus here on null hypothesis significance 

testing (NHST), given the prevalence of this type of hypothesis testing in the teaching and learning of 

statistics. 

It has been suggested that thinking about CIs primarily in terms of NHST might be detrimental to 

conceptual knowledge of CIs (e.g., Cumming, 2012, 2014; Grant & Nathan, 2008). For example, in one 

study, researchers were asked to interpret data from two fake studies, one with significant findings and 

the other with non-significant findings, presented in a variety of formats (i.e., CIs, p-values). To 

correctly interpret the data, participants needed to recognize that the findings across the two studies 

were not inconsistent, despite the difference in statistical significance. The data showed that 

interpretations varied widely across participants and were not always correct (Coulson et al., 2010). 

Additionally, many participants interpreted data presented in CI format in terms of NHST, and those 

participants who gave NHST-based interpretations (regardless of the initial presentation format or the 

correctness of the NHST-based interpretations themselves) performed worse overall than those who 

interpreted the data without relying on such concepts. Thus, it appears that thinking about CIs primarily 

in terms of NHST might be associated with lower levels of conceptual knowledge, at least for 

researchers. Little research has specifically examined the relationship between NHST-based thinking 

and conceptual knowledge of CIs in students (see Fidler, 2005, for an exception). Additionally, no 

studies have specifically addressed the relationship between thinking about CIs primarily in terms of 

estimation and conceptual knowledge of CIs. 

One key concept underlying CI interpretation is the distinction between samples and populations. 

As a tool for inferential statistics, CIs allow one to use sample data to make generalizations about the 

population. These types of generalizations, however, are contingent on a more general understanding 

of samples. No previous studies have examined how knowledge of the role of samples in making 

inferences about a population relates to conceptual knowledge of CIs. It seems likely that lack of 

understanding of sample mean concepts may be problematic for students’ understanding of CIs (Fidler, 

2006). 

 

1.4. CURRENT STUDY 

 

In brief, the goal of the current study was to assess undergraduate and graduate psychology students’ 

conceptual knowledge of CIs. As discussed above, some past research has investigated knowledge of 

CIs in different samples of participants (e.g., delMas et al., 2007; Fidler, 2006; Fidler & Loftus, 2009; 

García-Pérez & Alcalá-Quintana, 2016; Grant & Nathan, 2008; Henriques, 2016; Hoekstra, Johnson, 

& Kiers, 2012; Hoekstra et al, 2014). Most prior studies, however, used only a few items to assess CI 

misconceptions or CI knowledge, and none included a comprehensive measure of conceptual 

knowledge of CIs. In order to assess participants’ conceptual knowledge, we developed a set of 

questions designed to tap knowledge of CIs and key related concepts. Based on previous work, we 

expected that performance would be low and that misconceptions would be prevalent.  

In addition to measuring students’ conceptual knowledge, we were interested in how the content of 

students’ answers, specifically their tendency to talk about CIs primarily in terms of either NHST or 

estimation, related to their conceptual knowledge of CIs. We predicted that the tendency to mention 

NHST in responses would be related to lower levels of conceptual knowledge (e.g., Coulson et al., 

2010). Conversely, we predicted that the tendency to mention estimation in responses would be related 

to higher levels of conceptual knowledge. Finally, we predicted that strong understanding of the 

differences between sample and population means would be positively related to conceptual knowledge. 
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2. METHODS 

 

2.1. PARTICIPANTS 

 

The undergraduate sample included 21 students, all of whom had completed or were taking a Basic 

Statistics for Psychology course at a large university in the Midwestern United States. All participants 

who were enrolled in the course at the time of participation had already covered CIs in class. Participants 

ranged in age from 1823 (M = 20 years, 6 months, SD = 1.47), and 80% were female. There were four 

freshman, six sophomores, seven juniors, three seniors, and one fifth-year student in the sample. Eighty 

percent of participants identified as White, and the remaining 20% identified as Asian. For most 

participants, Basic Statistics for Psychology was the only college-level statistics course they had taken; 

only four students had completed an additional statistics class. Overall, participants had high 

standardized test scores, ranging from the 74th–99th percentile on the quantitative portion of the SAT or 

ACT (M = 93.5, SD = 6.2).  

The graduate sample consisted of 19 psychology graduate students, all of whom had completed at 

least one graduate-level statistics course. Participants represented a variety of areas of psychology 

(developmental, biological, clinical, cognitive, cognitive neuroscience, perceptual, and social). 

Participants ranged in age from 22–40 (M = 28 years, 1 month, SD = 4.2), and 58% were female. They 

had been in graduate school for one to seven years (M = 4 years; SD = 1.6). Seventy-four percent of the 

students identified as White, 16% as Asian, 5% as Black, and 5% as some other race or ethnicity. 

Although completion of only one graduate statistics course was required for participation, all 

participants had taken or were in the process of taking at least one additional course (M = 3.3, SD = 

1.1). Additionally, all but one participant reported having taken at least one statistics class as an 

undergraduate. Nine participants had served as TAs for at least one undergraduate statistics or methods 

course in the psychology department during their time in graduate school. One participant had also 

served as a TA for the introductory graduate statistics course in the psychology department. In terms of 

standardized test scores, participants ranged from the 87th–99th percentile on the quantitative section of 

the ACT/SAT (M = 95.2, SD = 4.5) and from the 45th–93rd percentile on the quantitative section of the 

GRE (M = 74.3, SD = 16.8). It should be noted that these scores reflect high GRE performance. All 

participants had completed the GRE before its recent re-norming. Therefore, although six participants 

received a perfect GRE score, they were only in the 93rd percentile. 

 

2.2. MATERIALS 

 

Conceptual knowledge assessment instrument As a first step in creating the assessment instrument, 

we compiled a set of potential test items from three sources: Basic Statistics for Psychology instructors, 

undergraduate statistics textbooks, and previous research. We reviewed these items in light of the major 

concepts that underlie CIs. As stated above, these concepts were (a) understanding the definition of the 

term “confidence interval,” (b) understanding the distinction between sample and population means and 

how they are related, (c) understanding the notion of confidence level (i.e., 90% vs. 95% CI), (d) 

understanding how various factors (e.g., sample size, sample variability) affect CI width, (e) 

understanding what can be inferred about future replications based on CIs, and (f) understanding how 

to interpret CIs accurately. Fourteen items, including open-response, true/false, and multiple-choice 

questions, were then selected for piloting.  

The initial fourteen-item test was piloted on seven professors/post-docs, seven graduate students, 

and ten undergraduates. Pilot participants were asked to provide responses to the questions and also to 

note any thoughts they had about the items, such as possible alternative interpretations. Based on the 

performance and feedback of these pilot participants, the initial set of items was revised. Some items 

were removed, others were reworded, and a few new items were created. 

The final conceptual knowledge assessment instrument consisted of 12 items, all in either open-

response, forced choice, or true/false format. One item asked participants to recall the formula for 

calculating CIs; this item was excluded from analysis (see below). Each of the remaining items was 

intended to assess at least one of the identified CI concepts or misconceptions. Nine of the items were 

used to create a measure of conceptual knowledge of CIs (Table 2). One additional item was used as 

part of a measure of understanding of sample mean concepts. Participants’ responses to the open-
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response and explanation items were also coded for mentions of estimation and mentions of null 

hypothesis significance testing, as well as mentions of specific misconceptions. These measures are 

described in greater detail below. Appendix A lists the items in the order in which they were presented 

to participants.  

 

Table 2. Items from the Conceptual Knowledge Assessment used  

to assess conceptual knowledge of CIs 

 
Item Target concept Source Content coding 

Open Response Items 

Define the term “confidence interval.” Definition Kirk, 1999 NHST, EST, M 

In a study of the effects of marijuana use during 

pregnancy, measurements on babies of mothers who 

used marijuana during pregnancy were compared to 

measurements on babies of mothers who did not. A 

95% confidence interval for the difference in mean 

head circumference (non-use minus use) was 0.61 

to 1.19 cm. What can be said from this statement 

about the hypothesis that the mean difference is 

zero? 

NHST 

interpretation of 

CI 

Ramsey & 

Schafer, 2002 

EST, M 

Imagine you are describing confidence intervals to a 

beginning statistics student. Explain how to 

interpret the following confidence interval: 95% 

confidence interval 8.5 < μ <11.5. 

Interpretation of 

CI 

Grant & Nathan, 

2008 

NHST, EST, M 

True or False + Explanation Items 

True or False: If all other factors are held constant, 

an 80% confidence interval is wider than a 90% 

confidence interval. Please explain your choice. 

Confidence level Gravetter & 

Wallnau, 2013 

NHST, EST, M 

True or False: If all other factors are held constant, 

a confidence interval computed from a sample of n 

= 25 is wider than a confidence interval computed 

from a sample of n = 100. Please explain your 

choice. 

Relation to 

sample size 

Gravetter & 

Wallnau, 2013 

NHST, EST, M 

True or False: If all other factors are held constant, 

a confidence interval computed from a sample with 

high variability is narrower than a confidence 

interval computed from a sample with low 

variability. Please explain your choice. 

Relation to 

sample 

variability 

Not applicable NHST, EST, M 

Forced Choice Items: Explain how each of the following affects the width of a confidence interval 

Increasing the sample size Relation to 

sample size 

Gravetter & 

Wallnau, 2000 

Not applicable 

Increasing the sample variability  Relation to 

sample 

variability 

Gravetter & 

Wallnau, 2000 

Not applicable 

Increasing the level of confidence (the percent 

confidence) 

Confidence level Gravetter & 

Wallnau, 2000 

Not applicable 

Note. NHST = null hypothesis significance testing, EST = estimation, M = misconceptions 

 

Misconception assessment instrument A second instrument was created to gauge the existence of 

CI misconceptions, including the Sample Mean, Confidence Level, Individual Scores, Fixed Interval, 

and Equality misconceptions (Table 1). This instrument consisted of eight statements (Table 3) that 

participants were asked to rate on a 5-point scale ranging from Very Inaccurate to Very Accurate. Six 

of the statements were incorrect (embodying one or more CI misconceptions); two reflected accurate 

conceptions of CIs. Appendix B lists the items in the original order given to participants.  
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Table 3. Items on the Misconception Assessment 

 
Concept or Misconception Statement Source 

Correct statements 

Definition A 95% confidence interval is the interval for which you 

are 95% certain that it contains the population mean. 
 

Not applicable 

Replication If you repeatedly take a sample of size n from a 

population and construct a 95% confidence interval 

each time, 95% of those intervals should contain the 

population mean. 
 

Not applicable 

Misconception statements 

Sample Mean A confidence interval gives you the range of possible 

values for the sample mean. 

Fidler, 2006; Castro 

Sotos et al., 2007 

Confidence Level, Sample 

Mean 

If you were to conduct an infinite number of 

experiments exactly like the original experiment, a 95% 

confidence interval would contain 95% of the sample 

means from these experiments. 
 

Cumming & 

Maillardet, 2006 

Individual scores A confidence interval gives you the range of the 

individual scores. 

Fidler, 2006; Castro 

Sotos et al., 2007 

Individual scores A confidence interval gives you the range of the 

individual scores within one standard deviation of the 

population mean. 
 

Fidler, 2006; Castro 

Sotos et al., 2007 

Fixed Interval A 95% confidence interval is the interval for which you 

are 95% confident that the population mean falls within 

it. 
 

Based on Grant & 

Nathan, 2008 

Equality A 95% confidence interval indicates that there is a 95% 

chance that the sample mean equals the population 

mean. 

Not applicable 

 

Recall of the CI formula We also asked participants to recall the formula for calculating one-sample 

mean CIs and to label each part of the formula. Very few participants accurately recalled the formula 

(only 14% of undergraduates and 32% of graduate students). With this item, we had hoped to evaluate 

whether students’ labels reflected accurate interpretations of the elements of the formula. We could not 

use this item to assess understanding in this way, however, because so few students recalled the formula, 

so we did not analyze this item further. 
 

2.3. PROCEDURE 

 

Students participated individually in a lab setting and were given up to an hour to complete the 

assessments. All participants completed the conceptual knowledge assessment first and the 

misconception assessment second. Approximately half of the participants (n = 11 undergraduates; n = 

9 graduate students) completed the assessments in paper-and-pencil format and the remainder (n = 10 

undergraduates; n = 10 graduate students) did so while talking aloud. Participants who were asked to 

talk aloud were videotaped. Assignment to test format was not entirely random, because not all 

participants consented to be recorded. Talk-aloud protocols were collected because we were interested 

in learning as much about participants’ thought processes as possible, and participants often provide 

more information when speaking than when giving written responses (see Ericsson & Simon, 1993). 

Additionally, it has been suggested that the best way to assess statistical reasoning is through one-on-

one interviews, as opposed to paper-and-pencil tests (e.g., Garfield, 2003). Upon completing the 

assessments, participants were asked to provide demographic information and then they were debriefed.  

 



53 

 

2.4. CODING 

 

Conceptual knowledge of CIs We developed a measure of conceptual knowledge of CIs, and we 

used this measure as the primary outcome measure in our analyses. 

Nine items from the conceptual knowledge assessment were taken to reflect conceptual knowledge 

of CIs. These items, listed in Table 2, were scored for correctness. Participants received one point for 

each item answered correctly. Items were scored by two independent coders, who obtained 91% 

agreement on scoring correctness. Disagreements were resolved via discussion.  

Performance on the correct statements on the misconception assessment was also taken to reflect 

conceptual knowledge of CIs (Table 3). Participants whose average rating of the two correct statements 

was 4 or above received 1 point whereas participants whose average rating was below 4 received 0 

points.  

Composite scores for conceptual knowledge of CIs were calculated by summing the points earned 

on the nine items listed in Table 2, and the point earned for average ratings of the correct statements on 

the misconceptions assessment, for a maximum possible score of 10. This 10-item measure had 

acceptable reliability ( = 0.70).  

 

Sample mean understanding We also developed a composite score for sample mean 

understanding. This measure was used as a predictor in our analyses.  

One item on the conceptual knowledge assessment was taken to reflect understanding of sample 

mean concepts (“Describe the difference between a sample mean and a population mean”). All students 

provided correct answers for this item, so our coding of this item focused on the depth of conceptual 

knowledge displayed in the responses. Participants who gave procedural definitions for each term (i.e., 

sample mean = sum of sample scores/n; population mean = sum of population scores/N) were classified 

as demonstrating procedural understanding. Responses that went beyond formulas and explained the 

relationship between a sample and population (i.e., responses that stated that a sample is a subset of a 

population) were classified as demonstrating relational understanding. Finally, participants who also 

mentioned the purpose of sampling (i.e., to make inferences about the population) were classified as 

demonstrating generalizable understanding. Agreement between coders was 88% for this item. 

Participants who displayed a generalizable understanding received one point for this item, and all other 

responses received zero points. 

Two items on the misconception assessment were designed to assess the sample mean 

misconception (Table 3). Participants whose average rating of the two sample mean misconception 

statements was higher than 3 (reflecting endorsement of the misconception) received 0 points for this 

item, whereas participants whose average rating was 3 or below received 1 point. 

Scores for sample mean understanding were created by summing the points earned on the 

sample/population mean item from the conceptual knowledge assessment and on the sample mean 

misconception statements on the misconceptions instrument. Thus, participants could receive 

composite scores for sample mean understanding from 02. 

 

Estimation Responses to the open-ended items on the conceptual knowledge assessment were 

coded for references to estimation concepts. The six open-response and explanation items used in the 

conceptual knowledge of CIs measure (Table 2) were coded for this purpose. One additional open-

response item was also coded for this purpose (“What are the advantages and disadvantages of 90% 

confidence intervals, relative to 99% confidence intervals?”). This item was not included in the 

conceptual knowledge of CIs measure, because participants interpreted it in various ways. 

Participants received a score indicating the number of items, out of a possible seven, on which they 

mentioned estimation. Reliability was 94% for coding mentions of estimation.  

 

Null Hypothesis Significance Testing (NHST) Responses to the open-ended items on the 

conceptual knowledge assessment were also coded for references to NHST concepts. The items coded 

for this purpose were the same as those coded for mentions of estimation, with one exception—the 

open-response item from the CIs assessment about the NHST interpretation of CIs was omitted because 

it specifically mentioned null hypothesis testing. 
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Preliminary analyses suggested that references to NHST were highly accurate overall, even when 

they occurred in the context of a longer incorrect response. Therefore, individual NHST statements 

were not scored for accuracy. Participants received a score indicating the number of items, out of a 

possible six, on which they mentioned NHST. Reliability was 94% for coding mentions of NHST.  

 

Misconceptions Participants’ ratings of the misconception statements on the misconception 

assessment were used as a metric for the existence of that misconception (see Table 1 for descriptions 

of the misconceptions). For misconceptions that were espoused in more than one statement (i.e., Sample 

Mean, Individual Scores; Table 3), the ratings of the statements were averaged to obtain one score for 

that misconception. 

Responses to the open-ended items on the conceptual knowledge assessment were also coded for 

specific misconceptions. The items coded for this purpose were the same seven items that were coded 

for mentions of estimation. For each misconception, participants were given a score of 1 if they ever 

endorsed the misconception and a score of 0 if they either (a) never mentioned the misconception or (b) 

mentioned it as being incorrect. Reliability was 97% for coding misconceptions. 

 

3. RESULTS 

 

3.1. TEST TYPE 

 

Participants who completed the assessment in paper-and-pencil format did not differ from those 

who completed the assessment while talking aloud, either in conceptual knowledge of CIs or in sample 

mean understanding. Additionally, talk-aloud participants were no more likely than paper-and-pencil 

participants to mention estimation, NHST, or any of the misconceptions in their responses to the open-

ended items. The two groups of participants also did not differ in their ratings of the misconceptions. 

In light of this, data from all participants was aggregated for analysis. 

 

3.2. CONCEPTUAL KNOWLEDGE OF CIs 

 

Overall performance was mediocre, with composite scores for conceptual knowledge of CIs 

averaging 5.97 out of a possible 10 (range 110, 95% CI [5.18, 6.76]). We analyzed conceptual 

knowledge scores using a general linear model, and found that, on average, graduate students performed 

1.75 points better than undergraduate students (graduate M = 6.89, SD = 2.58, range = 210; 

undergraduate M = 5.14, SD = 2.13, range = 18), F(1, 38) = 5.53, p = 0.024, p
2 = 0.127, 95% CI for 

difference in means [0.24, 3.26]. 

 

3.3. MISCONCEPTIONS  

 

Considering each misconception separately, we examined the proportion of participants who 

mentioned the misconception and the ratings of the misconception items (Table 4). Because none of the 

rating variables met the normality assumption, we present only descriptive results for the combined 

sample. To evaluate group differences in the misconception ratings, we used bias-corrected and 

accelerated bootstrapping with 1,000 replications to estimate 95% confidence intervals for the 

differences in the mean ratings.  

 

Sample mean (SM) Explicit statements indicative of the belief that a CI allows one to estimate the 

sample mean were rare, with only six participants (2 undergraduates and 4 graduates) ever displaying 

this misconception. As a representative example, in response to the item “Explain how to interpret the 

following confidence interval: 95% confidence interval 8.5 < μ < 11.5,” one participant wrote, “We can 

say with 95% confidence that our sample mean falls within 8.5 units less than the mean or 11.5 units 

greater than the mean.” The SM statements in the misconceptions assessment were rated as moderately 

accurate (M = 3.26, SD = 1.09). These ratings were included in the sample mean understanding measure, 

discussed below. Undergraduate students’ average ratings of the SM statements were 0.35 points higher 
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than graduate students’ average ratings (undergraduate M = 3.43, SD = 1.12; graduate M = 3.08, SD = 

1.04), 95% CI for mean difference [0.95, 0.33]. 

 

Table 4. Proportion of participants who mentioned a particular misconception and average ratings 

on the misconception assessment for each group 

 
 Undergraduate  Graduate 

Misconception 
Mentioned 

Proportion (SE) 

Rating 

Mean (SD) 

 Mentioned 

Proportion (SE) 

Rating  

Mean (SD) 

Sample Mean (SM) 9.5% (0.06) 3.43 (1.12)  21.0% (0.09) 3.08 (1.04) 

Confidence Level (CL) N/A 3.71 (1.38)  42.1% (0.11) 3.79 (1.36) 

Individual Scores (IS) 14.2% (0.07) 1.80 (0.94)  N/A 1.32 (0.58) 

Fixed Interval (FI) 42.8% (0.10) 4.19 (1.33)  68.4% (0.10) 3.00 (1.70) 

Equality (EQ) N/A 1.65 (0.99)  N/A 1.26 (0.73) 

 

Confidence Level (CL) Eight participants made at least one statement expressing the CL 

misconception: the belief that the percent confidence associated with an interval indicates the 

percentage of replication means that will fall within the original interval. For example, in response to 

the item “Explain how to interpret the following confidence interval: 95% confidence interval 8.5 < μ 

< 11.5,” one participant stated that “ … a sample of whatever size that we got this confidence interval 

from, if we were to draw samples of that size, 95 times out of 100, the mean of that sample would lie 

between those two values.” All eight of the participants who made such statements were graduate 

students. On the misconceptions assessment, the CL statement was rated as being fairly accurate (M = 

3.75, SD  = 1.35). Graduate students’ average ratings of the CL statement were 0.08 points higher than 

undergraduates’ average ratings (graduate M = 3.79, SD = 1.36; undergraduate M = 3.71, SD = 1.38), 

95% CI for difference in means [0.74, 0.90].  
 

Individual Scores (IS) The IS misconception was the second least frequent in participant responses, 

with only three participants ever asserting that a CI provides information about individual scores. For 

example, when asked to define the term confidence interval, one participant wrote, “A confidence 

interval is an interval of whichever % you choose that between a range of [x, y] that % of the population 

will fall inside those scores.” 

Ratings of the IS statements were also very low (M = 1.56, SD = 0.81). Undergraduates’ average 

ratings of the IS statements were 0.48 points higher than graduate students’ average ratings 

(undergraduate M = 1.8, SD = 0.94; graduate M = 1.32, SD = 0.58), 95% CI for difference in means 

[0.99, 0.019]. Two rating items assessed this misconception and both received low ratings (M = 1.35; 

M = 1.77). These low ratings align with other data suggesting that the IS misconception is relatively 

rare. For example, Fidler (2006) reported that, on two different items, only 8% and 11% of a sample of 

Australian first- and second-year psychology and ecology students endorsed this misconception.  

 

Fixed Interval (FI) Use of language associated with the FI misconception was quite common, with 

about half of all participants (22 of 40) making a statement about the mean “falling” inside the interval. 

Ratings of the FI statement also indicated that participants generally believed it to be accurate (M = 

3.62, SD = 1.61). Undergraduates’ average rating of the FI item was 1.19 points higher than graduate 

students’ average rating (undergraduate M = 4.19, SD = 1.33; graduate M = 3.00, SD = 1.70), 95% CI 

for difference in means [2.03, 0.188].  

 

Equality (EQ) No participant ever explicitly mentioned the idea that a CI indicates the likelihood 

that the sample mean equals the population mean. Ratings of the EQ statement were uniformly low (M 

= 1.46, SD = 0.88). Undergraduates’ average ratings were 0.39 points higher than graduate students’ 

average ratings (undergraduate M = 1.65, SD = 0.99; graduate M = 1.26, SD = 0.73), 95% CI for 

difference in means [–0.94, 0.21]. This was the only statement that did not receive a rating of 5 from at 

least one participant.  
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3.4. PREDICTOR MEASURES 

 

We used general linear models to analyze whether values of each predictor measure varied as a 

function of participant group (i.e., undergraduate or graduate students). Each variable met the general 

linear model assumption of normality.  

 
Sample mean understanding Overall, participants scored fairly low on sample mean understanding 

(M = 0.80 out of 2; 95% CI [.56, 1.03]). This low level of understanding aligns with other data indicating 

that many students have weak understanding of the sample mean and its relation to CIs (Fidler, 2006). 

Scores for undergraduate students and graduate students were similar (undergraduate M = 0.62, SD = 

0.67; graduate M = 1.00, SD = 0.75), b1 = 0.38, F(1, 38) = 2.90, p = 0.09, 95% CI for mean difference 

[–0.07, 0.83]. As predicted, understanding of the sample mean was positively related to conceptual 

knowledge of CIs, b1 = 1.26, F(1, 38) = 5.95, p = 0.019, p
2 = 0.135, 95% CI for mean difference [0.215, 

2.31]. 

 

Null Hypothesis Significance Testing (NHST) References to NHST were fairly common, with 15 

participants mentioning NHST at least once. For example, one participant stated that a confidence 

interval is “the interval where your, um, where your calculated critical value should fall and then if the 

value of your null hypothesis falls within there, then you can’t reject it.” Undergraduate and graduate 

students mentioned NHST at similar rates (undergraduate M = 1.33, SD = 1.49 vs. graduate M = 1.16, 

SD = 1.12), b1 = 0.17, F(1, 38) = 0.174, p = 0.679, 95% CI for mean difference [1.02, 0.67]. 

Furthermore, although the relationship between mentioning NHST and conceptual knowledge was in 

the predicted negative direction, referencing NHST did not significantly predict conceptual knowledge 

of CIs, b1 = –0.52, F(1, 38) = 3.24, p = 0.079, 95% CI for difference in means [1.12, 0.065].  

 

Estimation References to estimation were produced by about one-quarter (13 of 40) of participants. 

For example, when asked to explain the effect of increasing sample size on confidence level (all other 

factors remaining constant), one participant wrote, “Your estimate with a smaller sample is less 

precise/representative/etc., meaning it’s more likely your sample mean deviates from the population 

mean, widening the CI.” On average, graduate students produced 0.96 more mentions of estimation in 

their responses than undergraduate students (graduate M = 1.16, SD = 1.57; undergraduate M = 0.19, 

SD = 0.40), F(1, 38) = 7.42, p = 0.009, p
2 = 0.163, 95% CI for difference in means [0.248, 1.68]. In 

addition, as predicted, mentions of estimation were positively related to conceptual knowledge of CIs, 

b1 = 0.97, F(1, 38) = 11.04, p = 0.001, p
2 = 0.225, 95% CI for mean difference [0.38, 1.56].  

 

3.5. PREDICTING CONCEPTUAL KNOWLEDGE OF CIs 

 

We also used a general linear model to analyze sample mean understanding, references to NHST, 

and references to estimation as predictors of conceptual knowledge of CIs (Table 5). There was a 

significant effect of sample mean understanding, such that better understanding of the sample mean was 

associated with greater knowledge of CIs, bSM = 1.00, F(1, 36) = 4.29, p = 0.045, p
2 = 0.107, 95% CI 

for mean difference [0.02, 1.99]. Additionally, there was a significant effect of estimation, such that 

more mentions of estimation were associated with greater knowledge of CIs, bEST = 0.73, F(1, 36) = 

5.59, p = 0.023, p
2 = 0.135, 95% CI for mean difference [0.10, 1.36]. Mentions of NHST was not a 

significant predictor of knowledge of CIs when the other predictors were included in the analysis, 

 

Table 5. Prediction of conceptual knowledge of CIs from sample mean understanding, 

 null hypothesis significance testing mentions, and estimation mentions 

 
Predictor b Std. error p-value 

SM Understanding 1.00 0.485 0.045 

NHST Mentions –0.28 0.279 0.316 

Estimation Mentions 0.736 0.311 0.023 

Model R2 = 0.31. SM = sample mean; NHST = Null hypothesis significance testing 
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bNHST = –0.28, F(1, 36) = 1.03, p = 0.316, p
2 = 0.028, 95% CI for difference in means [0.85, 1.36]. In 

total, the effect of sample mean understanding, NHST mentions, and estimation mentions on conceptual 

knowledge was large, in that these three predictors accounted for 31% of the variance in conceptual 

knowledge of CIs.  

 

4. DISCUSSION 

 

In this study, conceptual knowledge of CIs was assessed in both undergraduate and graduate 

psychology students. The current findings replicate previous work suggesting that CIs are challenging 

(e.g., Fidler, 2006), in that performance on the assessment was only mediocre, despite the fact that all 

participants had received instruction about CIs in at least one statistics class.  

 

4.1. PERFORMANCE BY UNDERGRADUATE VS. GRADUATE STUDENTS 

 

Unsurprisingly, graduate students outperformed undergraduates on many items. In fact, on all items 

for which the performance of the two groups differed substantially, the graduate students performed 

better. There was, however, one misconception that was espoused more frequently by graduate students. 

The confidence level (CL) misconception was mentioned by eight graduate students but was never 

mentioned by an undergraduate. Based on the content of the responses, it seems that espousing this 

misconception may actually reflect slightly better knowledge of CIs. Specifically, the CL 

misconception requires recognizing the relevance of replication (repeated sampling) to the definition of 

the confidence interval. Thus, although graduate students erred in characterizing the specific 

relationship between confidence level and replication—an error also commonly made by researchers 

(Cumming & Maillardet, 2006)—they demonstrated a slightly more sophisticated understanding than 

undergraduates, who rarely linked CIs and replication.  

 

4.2. CONFIDENCE INTERVAL MISCONCEPTIONS 

 

Previous work has identified a number of misconceptions that students and researchers have about 

CIs (Table 1). The current findings suggest that although some of these misconceptions are fairly 

common, others are less frequent. The individual scores (IS) misconception (i.e., a CI gives the range 

of individual scores) and the equality misconception (i.e., a CI tells the likelihood of the sample mean 

being equal to the population mean) were mentioned very rarely and were generally given low ratings. 

The sample mean misconception (i.e., a CI allows one to estimate the sample mean) was rarely 

mentioned, but it did receive moderately high ratings. The confidence level misconception (i.e., the 

confidence level of a calculated interval indicates the percentage of replication means that will fall 

within the original interval) was mentioned frequently by graduate students and was generally rated 

highly, suggesting that it may be a widely held belief. The fixed interval misconception (i.e., a CI is a 

fixed interval, within which a moving parameter may or may not fall) was also mentioned frequently, 

and this may be reflective of the frequent use of fixed-interval language in statistics education (see 

Grant & Nathan, 2008).  

 

4.3. PREDICTING PERFORMANCE 

 

Based on previous work, we hypothesized that mentioning NHST and estimation, the two main uses 

of CIs, would each relate to performance, but in different ways. The association of NHST mentions and 

conceptual knowledge of CIs was in the expected negative direction, but was not significant. As 

predicted, however, mentions of estimation were positively associated with conceptual knowledge of 

CIs. These findings suggest that it may be important to consider how the estimation aspect of CIs is 

taught in statistics classes.  

One additional concept, sample mean understanding, was also hypothesized to be relevant to CI 

knowledge. As predicted, participants with greater understanding of the relationship between a sample 

mean and the population mean had higher levels of conceptual knowledge of CIs.  

When NHST, estimation, and sample mean understanding were all included in a single model, 

estimation and sample mean understanding were the only two significant predictors of conceptual 
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knowledge of CIs. Estimation and sample mean understanding may be useful to students because they 

highlight general principles that are important for deep understanding of statistics, more generally, and 

CIs, in particular.  

 

4.4. LIMITATIONS 

 

We created our assessment instruments to evaluate participants’ knowledge of CIs and related 

concepts, and to diagnose potential misconceptions. Our assessments represent a first step in assessing 

knowledge of CIs and related concepts, and they go beyond evaluating participants’ abilities to calculate 

CIs. We acknowledge, however, that our assessments could be improved in many ways.  

One potential issue has to do with the response scale we used for the misconceptions assessment, 

which ranged from very inaccurate to very accurate. Participants may have found it confusing to judge 

the degree of accuracy of a statement, rather than simply to judge it as accurate or inaccurate. An 

alternative approach would be to ask participants to judge whether each item is correct or incorrect, and 

then to ask them to provide a rating of their confidence in that decision.  

Another issue has to do with the item with which we intended to assess the Fixed Interval 

misconception on the misconceptions assessment (Table 1). Although we intended this item to indicate 

that the interval was fixed and the parameter could vary (falling into the interval or not), we realized 

after the data were collected that the wording was ambiguous, and that some participants may not have 

interpreted this item in the way we intended. This is potentially problematic because we included only 

one item to assess the Fixed Interval misconception. We recommend that future studies that seek to 

investigate the Fixed Interval misconception use a clearer statement of this misconception.  

The items that we used to assess the individual scores misconception could also be improved. This 

misconception is sometimes expressed as “95% of the data are included in the confidence interval” or 

“the confidence interval shows the data within one standard deviation of the mean” (see e.g., Castro 

Sotos et al., 2007; Fidler, 2006; Grant & Nathan, 2008)—ideas that were not reflected in the specific 

items we used. Future studies could include a wider range of misconception items and could examine 

the correlations among them. 

Another set of limitations has to do with our sample. Both participant groups were small (21 

undergraduates and 19 graduate students) and fairly homogeneous, and the groups did not represent 

random samples of psychology students. All of the undergraduate students had taken or were taking the 

same undergraduate statistics course, and all of the graduate students were from the same department 

and had taken the same graduate statistics course, although not all in the same year. Thus, one should 

be cautious about generalizing the findings to psychology undergraduates or graduate students at other 

universities, who might use different textbooks or who might have different patterns of course work. 

Indeed, it is possible that some of the misconceptions that we observed may have been inadvertently 

reinforced by the textbooks that students used or by the instruction or curricular sequencing that they 

encountered in their statistics courses (see Grant & Nathan, 2008).  

In light of these limitations, we suggest that future studies include larger samples of students and 

examine how curricular materials, such as textbooks, influence students’ knowledge of CIs. Future 

studies should also focus more directly on participants’ interpretations of CIs and on how context affects 

the knowledge about CIs that participants activate and draw on. Future studies might also include 

additional items to directly assess knowledge of sample mean, estimation, and NHST.  

Although our focus in this paper has been on confidence intervals construed within a frequentist 

perspective, an alternative would be to employ a Bayesian framework, which assumes that a parameter 

has a probability distribution. Within the Bayesian framework, a 95% posterior probability, or credible, 

interval means that the probability that the parameter lies in the interval is 95%. This Bayesian 

interpretation—though not accurate for confidence intervals—is highly intuitive (see Gurrin, 

Kurinczuk, & Burton, 2000), and indeed, it is similar in spirit to two of the misconceptions identified 

within the frequentist perspective, the confidence level and fixed interval misconceptions. 

 

4.5. CONCLUSION 

 

The current findings replicate previous work suggesting that CIs involve difficult statistical 

concepts. Further, they document the existence of some of the previously identified misconceptions in 
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participant groups that have not previously been studied. Although three foundational constructs were 

hypothesized to influence conceptual knowledge of CIs, only two—estimation and sample mean 

understanding—emerged as significant contributors to conceptual knowledge of CIs. Previous work 

has focused on concepts that might be detrimental to CI understanding, but the present work suggests 

that there may be some concepts, such as estimation, that are actually beneficial.  

The current findings highlight the need for additional research regarding ways to improve lessons 

about CIs in order to promote deep conceptual understanding and prevent misconceptions. Based on 

this work, it appears that lessons that focus on the relationship between samples and populations and 

on the use of CIs for estimation might be particularly effective. 
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APPENDIX A: ITEMS ON THE CONCEPTUAL KNOWLEDGE  

ASSESSMENT IN THE ORDER PRESENTED 

 

1. Define the term “confidence interval.” 

 

Explain how each of the following affects the width of a confidence interval: 

2. Increasing the sample size 

3. Increasing the sample variability 

4. Increasing the level of confidence (the percent confidence) 

 

5. What are the advantages and disadvantages of 90% confidence intervals, relative to 99% 

confidence intervals? 

6. In a study of the effects of marijuana use during pregnancy, measurements on babies of mothers 

who used marijuana during pregnancy were compared to measurements on babies of mothers who 

did not. A 95% confidence interval for the difference in mean head circumference (non-use minus 

use) was 0.61 to 1.19 cm. What can be said from this statement about the hypothesis that the mean 

difference is zero? 

7. True or False: If all other factors are held constant, an 80% confidence interval is wider than a 

90% confidence interval. Please explain your choice. 

8. True or False: If all other factors are held constant, a confidence interval computed from a sample 

of n = 25 is wider than a confidence interval computed from a sample of n = 100. Please explain 

your choice. 

9. True or False: If all other factors are held constant, a confidence interval computed from a sample 

with high variability is narrower than a confidence interval computed from a sample with low 

variability. Please explain your choice. 

10. Imagine you are describing confidence intervals to a beginning statistics student. Explain how to 

interpret the following confidence interval: 95% confidence interval 8.5 < μ <11.5. 

11. Write the formula for a confidence interval. Label all pieces of the equation. 

12. Describe the difference between a sample mean and a population mean. 

 

APPENDIX B: ITEMS ON THE MISCONCEPTION  

ASSESSMENT IN THE ORDER PRESENTED 

 

Rate the following statements on a scale from 1 (Very Inaccurate) to 5 (Very Accurate). Circle your 

response. 

 

a. A confidence interval gives you the range of possible values for the sample mean.  

b. If you were to conduct an infinite number of experiments exactly like the original experiment, a 

95% confidence interval would contain 95% of the sample means from these experiments. 

c. A confidence interval gives you the range of the individual scores. 

d. A 95% confidence interval is the interval for which you are 95% certain that it contains the 

population mean. 

e. If you repeatedly take a sample of size n from a population and construct a 95% confidence 

interval each time, 95% of those intervals will contain the population mean. 

f. A confidence interval gives you the range of the individual scores within one standard deviation 

of the population mean. 

g. A 95% confidence interval is the interval for which you are 95% confident that the population 

mean falls within it. 

h. A 95% confidence interval indicates that there is a 95% chance that the sample mean equals the 

population mean. 
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