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ABSTRACT 

 

Researchers have documented many misconceptions students hold about sampling variability. This 

study takes a different approach—instead of identifying shortcomings, we consider the productive 

reasoning pieces students construct as they reason about sampling distributions. We interviewed 

eight undergraduate students newly enrolled in an introductory statistics course. Taking a grounded 

theory style approach, we identified 10 resources that students used when reasoning about the 

sampling distribution for the average within two contexts: penny years and dice rolls. Students had 

varied success in their responses as they made choices about how to represent their resources in 

their constructions. Successful constructions exemplified careful blending of resources, while less 

successful constructions reflected disjoint perceptions and tensions between seemingly conflicting 

resources. Our findings stress the importance of framing students as capable reasoning agents by 

describing student resources that were used while solving tasks related to sampling distributions. 

We also discuss the influence of context and problem setting in students’ reasoning and resource 

elicitation. 

 

Keywords: Statistics education research; Constructivism; Statistical reasoning; Conceptual 

blending 
 

 INTRODUCTION 

 

The heart of statistical reasoning lies in connecting the core statistical concepts of sampling, 

variability, and distribution into a unified conceptualization of sampling distributions (Garfield & Ben-

Zvi, 2008). When students struggle to reconcile these ideas meaningfully, they may resort to procedural, 

cookbook approaches when applying formal inferential methods (Garfield, delMas, & Zieffler, 2012).  

The statistics education literature has traditionally discussed students’ statistical reasoning in terms 

of common misconceptions (e.g., Chance, delMas, & Garfield, 2004; Cooper & Shore, 2008; Lane-

Getaz, 2017; Sotos, Vanhoof, Van den Noortgate, & Onghena, 2007). Misconceptions, as defined by 

Sotos et al. (2007), may represent “any sort of fallacies, misunderstandings, misuses, or 

misinterpretations of concepts, provided that they result in a documented systematic pattern of error” 

(p. 99).  

As educational researchers and instructors, it is often easier to discuss what students do not know 

rather than what they do know (Sewell, 2002). Sewell explained that constructivist-based philosophies 

toward learning that truly value students’ pre-existing ideas are greatly challenged if we believe students 

need to eradicate their wrong ideas in order to adopt correct ones (e.g., Eaton, Anderson, & Smith, 

1984). That is not to say that labeling common misconceptions is inherently problematic in educational 

research, but rather that such terminology should be used thoughtfully:  

Unfortunately, most people … [see] misconceptions as impediments, and in this way, 

misconceptions research has had almost the opposite effect from the researchers’ intentions. Instead 

of raising respect for students’ prior understandings, it has convinced many educators that students 

                                                      
Statistics Education Research Journal, 18(1), 2645, http://www.stat.auckland.ac.nz/serj 

 International Association for Statistical Education (IASE/ISI), May, 2019 
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are worse than blank slates; they’re slates with wrong ideas written on them in hard-to-erase chalk. 

(Hammer & Van Zee, 2006, p. 15) 

An alternative research perspective is to investigate the productive steps students take in their 

reasoning by identifying the resources they bring to a task (Smith, diSessa, & Roschelle, 1994). These 

resources may be conceptualized as Knowledge in Pieces, representing fine-grained intuitions drawn 

from experiences and activated in multiple contexts where the learner identifies potential connections 

(diSessa, 1988). diSessa presented the notion “closer means stronger” as a common resource students 

utilize to make sense of the physical world (e.g., sound or heat is heard or felt stronger as one moves 

closer to the source). This fundamental pattern, however, can also be applied in inappropriate contexts 

(e.g., the temperature is hotter in summer because our hemisphere faces the sun more directly, not 

because Earth is closer to the sun). Resources, when blended appropriately, serve as building blocks for 

constructing complex conceptions (Smith et al., 1994). It follows that researchers and instructors should 

be responsive to the resources students apply to statistical problems. “Learning is enhanced when 

teachers pay attention to the knowledge and beliefs that learners bring to a learning task, use this 

knowledge as a starting point for new instruction, and monitor students’ changing conceptions as 

instruction proceeds” (Garfield & Ben-Zvi, 2009, p. 73). 

By analyzing interviews with eight undergraduate students enrolled in an introductory statistics 

course at a large, public university, we examined the productive ideas students shared that could be 

leveraged toward conceptual understanding of the sampling distribution of the mean. Students 

completed two similar tasks with different contexts. Each task asked students to construct a sampling 

distribution for the sample averages and explain how its shape would change as the sample size 

increased. Our research questions are: 

1) What resources do newly-enrolled students in introductory statistics elicit when reasoning about 

sampling distributions? 

2) How do students reconcile multiple, seemingly contradictory resources in their attempts to 

make sense of sampling distributions? 

3) How—if at all—does the context and problem setting influence students’ resource elicitation? 

 

 LITERATURE REVIEW 

 

2.1.  CURRICULAR INCLUSION OF SAMPLING DISTRIBUTIONS 

 

Our research questions assume that undergraduate students should develop a deep, conceptual 

understanding of sampling distributions and the Central Limit Theorem (CLT). However, a growing 

number of statistics educators question the value of inferential statistical testing (IST) in the applied 

statistics curriculum (White & Gorard, 2017). For this reason, we first examine whether an in-depth 

exploration of sampling distributions and central tendency is useful in an introductory statistics course.  

We acknowledge that the needs of every student and course are different. Thus, any argument for 

curricular inclusion should be made contextually rather than universally. Many proposed introductory 

course formats that focus predominately on basic research design and statistical literacy reasonably 

preclude much theoretical content (e.g., Baglin, Reece, & Baker, 2015; Prodromou & Dunn, 2017). 

Foregoing or limiting course time on sampling distributions and the CLT seems reasonable for such 

courses.  

Shared concerns over teaching IST center on the frequency for which IST assumptions are unmet 

in research contexts, as well as the convuluted meaning of p-values and confidence intervals in these 

paradigms (Nicholson & Ridgway, 2017; White & Gorard, 2017). Regardless of the future for 

quantitative research methods, we believe that any curriculum designed to prepare students to 

participate in quantitative research would be remiss to avoid acquainting students with the statistical 

methods found in their research literature for the previous several decades. Arguably, any movement 

away from IST methods in quantitative research methods should require students to have more focused 

instruction on the CLT and the assumptions of IST to understand the reasoning for such a paradigm-

shifting decision for their discipline.  

Among alternative methods proposed for introductory courses, instructors may employ simulation-

based inference (e.g., permutation tests) as a safer choice based on its more intuitive p-value 

interpretations and lack of a normality assumption (e.g., Garfield et al., 2012). Even if simulation-based 
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inference replaced parametric testing in the introductory course curriculum, students must still reason 

about sampling distributions in this testing context, albeit with decreased need to understand central 

tendency. Garfield and Ben-Zvi (2008) emphasized that coursework involving sampling distributions 

should give ample opportunity for students to reason about the phenomenon rather than assuming 

students can merely accept the definition and representation without later content difficulty. 

 

2.2.  STUDENT REASONING ABOUT SAMPLING VARIABILITY 

  

On the topic of sampling variability, many researchers have found that students commonly express 

one of two extreme perspectives on sample-population relationships. The first is believing that a sample 

will represent the population perfectly, and the second is believing that samples are unpredictable and 

unrepresentative of the population (Braham & Ben-Zvi, 2017; Prodromou & Pratt, 2006; Shaughnessy, 

2007; Watson, Callingham, & Kelly, 2007). Prodromou and Pratt (2006) discussed the former as a 

modeling perspective—students reason about long-term, overall results. The latter is termed a data-

centric perspective—students recognize the inherent variability from outcome to outcome.  

Pratt (2000) and Pratt, Johnston-Wilder, Ainley, and Mason (2008) found that the success of 10- 

and 11-year-olds in reasoning about sample likelihood is anchored in their balancing of both local and 

global perspectives. A local perspective, as defined by the authors, involves eliciting resources about 

trial-by-trial outcomes. These short-term results accentuate the unpredictability inherent in small 

samples. In contrast, a global perspective allows students to see predictability and stabilization in 

results. In Pratt et al., manipulating the parameters in a certain computer micro-world allowed students 

little control over short-term results, but prominent control over the long-term. The authors reported 

students struggling to take a global perspective as they typically did not take large samples on their own 

to see how their sample statistics would stabilize and converge over time. Only when students were 

guided to take very large samples (i.e., over 200) were they eliciting both local and global reasoning. 

Additional scaffolding from the instructor and contextual cues from the simulation environment aided 

students in reconciling both perspectives. 

Another layer of complexity is added when students must reason about the characteristics of 

multiple independent samples. In their varied tasks, Shaughnessy and colleagues (e.g., Noll, 

Shaughnessy, & Ciancetta, 2010; Watson & Shaughnessy, 2004) investigated students’ beliefs about 

the reasonableness of a sampling distribution for proportions given certain characteristics about the 

population. Under the constraint of taking a limited number of samples (e.g., 10 or 100), the researchers 

found that students at all levels typically overestimated the likelihood of extreme sample proportions. 

Much of this error seems to be rooted in students’ difficulty to employ proportional reasoning in their 

responses—failing to see the occurrence of an extreme result being accompanied by a large number of 

non-extreme results. Similar to the findings from Pratt et al. (2008), we view these students as balancing 

the local and global perspectives, but from the perspective of a distribution of sample averages rather 

than observations from a single, growing sample. 

Braham and Ben-Zvi (2017) studied how middle-school students developed correct conceptions of 

sampling distributions across several weeks of activities. By alternating between activities with real 

samples in the context of an unknown population and simulated samples from a known population, 

students expressed different perspectives about the composition of the sampling distribution. Students 

typically started with a relativistic perspective of sampling distributions (i.e., unpredictable), followed 

by a uniformly representative sampling distribution, and finally a narrowing bell-shaped sampling 

distribution.  

 

2.3.  THEORETICAL PERSPECTIVERESOURCES AND MISCONCEPTIONS 

 

One theoretical perspective for approaching student understanding is to identify the conceptual 

resources students demonstrate—ideas that have productive applications in certain contexts, but may 

not necessarily be universally correct (Smith et al., 1994). These may include approaches, perspectives, 

and strategies that can be used in the construction of a conception. For example, the works of Kahneman 

and Tversky (1972) and Konold, Pollatsek, Well, Lohmeier, and Lipson (1993) explored the 

“heuristics” students would apply as they reasoned about likely events from repeated coin flips. These 

heuristics represented fundamental building blocks students elicited from their broader conceptual 
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knowledge as they made arguments about the likelihood of certain results. Furthermore, Pratt et al. 

(2008) more recently used a resource framing to understand how students make connections between 

theoretical probability and long-term sampling results. 

The common misconceptions that have been identified in the literature contribute another research 

perspective that offers important insight on student thinking. Chance et al. (2004) summarized several 

misconceptions in student thinking on the topic, including (p. 302): 

 [Thinking] sampling distributions should look more like the population as the sample size 

increases (generalizes expectations for a single sample of observed values to a sampling 

distribution). 

 [Predicting] that sampling distributions for small and large sample sizes have the same 

variability. 

 [Believing] sampling distributions for large samples have more variability. 

 [Confusing] one sample (real data) with all possible samples (in distribution) or potential 

samples. 

 [Thinking that] the mean of a positive skewed distribution will be greater than the mean of the 

sampling distribution for samples taken from this population. 

As was the case with Kahneman and Tversky’s (1972) heuristics, many of these misconceptions 

simultaneously hint at productive observations that students make.  

We find these perspectives on student thinking to be incomplete without proper investigation of 

how the ideas stem from more fundamental conceptual resources. Garfield, Le, Zieffler, and Ben-Zvi 

(2015) noted the limited value of only identifying misconceptions, describing these findings as drawing 

attention to gaps in students’ understanding rather than their potential for conceptual progress towards 

more expert thinking. The reflections of Garfield et al. on this matter echo the call from Hammer and 

van Zee (2006) that researchers should not view common student errors as mistakes to be erased, but 

ideas to be nurtured. 

Still, identifying productive seeds in students’ thinking is not as simple as avoiding the term 

misconception. For example, Zieffler et al. (2008) described the heuristics identified by Konold et al. 

(1993) as the “systematic and persistent errors people make when attempting to make decisions 

involving chance and uncertainty” (p. 3). There is nothing remarkable about the activation of conceptual 

resources without a corresponding attempt from the learner to make deeper conceptual sense of these 

resources. We point to Fauconnier and Turner’s (2003) notion of conceptual blending as the theoretical 

basis for this point. Fauconnier and Turner explained that knowledge is created as individuals learn to 

link distinct objects together to form an updated conceptual basis, leading to new schema from which 

to analyze and make sense of incoming information. Thus, it is not the presence of resources themselves 

that lead students to conceptual gains, but rather the meaningful blending of resources into new 

conceptual structures (Smith et al., 1994). 

Our work presents an initial snapshot of college students’ intuitions and ideas as they enter the 

introductory statistics course. We discuss the resources they used as they treaded unfamiliar conceptual 

territory. Similar to Pratt et al. (2008), we consider whether context and problem characteristics are 

related to how students reason statistically. Hjalmarson, Moore, and delMas (2011) discussed context 

as an entry point to a task that may elicit inspiration with regard to constructing measures and methods 

to make sense of data. In the context of statistical and probabilistic reasoning, researchers report that 

students use different and sometimes contrarian approaches in similar tasks with different 

characteristics (e.g., Konold et al., 1993). In response, our research examines student reasoning across 

two similar problems with different contextual characteristics. 

 

 METHODS 

 

3.1.  SETTING 

 

This study was conducted with eight students enrolled in an introduction to applied statistics course 

(enrollment of 500) at a large, public university in the Southeastern United States. The students 

responded to an in-class invitation for participants who were taking their first college statistics course. 

Each participant completed a 30-minute interview during the second week of class during which they 
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were asked to complete two open-ended tasks involving the sampling distribution of the sample 

average. At the time of each interview, the course had only covered summary statistics and visual 

displays of data. 

Details about the participants are shown in Table 1. Noah and David were two and four years 

removed from their high school AP statistics courses respectively. 

 

Table 1. Participants 

 
Pseudonym Major Statistics Coursework 

Noah Psychology & Criminology AP Statistics 

Elijah Exercise & Physiology None 

Holland Pre-Med None 

Mika Psychology None 

Lily Family & Child Sciences None 

David Geology AP Statistics  

Polina Psychology None 

Robert Family & Child Sciences None 

 

3.2.  DATA COLLECTION 

 

Data sources included videos from each of the eight interviews, interview transcriptions, and student 

drawings/written work. Each task—henceforth referred to as the Penny task and Dice task—contained 

three prompts (full text of the prompts for both tasks can be found in the Appendix). The first prompt 

of the Penny task asked students to think about the production years of pennies in circulation, including 

the range of years one might reasonably see and the number of pennies one would expect to find for 

each of these years. Using the x-y axes on the page, students were then guided by the interviewer (first 

author) to draw a graph representing the population distribution of the production years of pennies. 

Elijah’s drawing for this prompt is shown as an example (Figure 1). Although the focus of this study 

was on reasoning about sampling distributions and not population distributions, we wanted students to 

take ownership of the task from the beginning rather than to provide them with a pre-determined 

population shape.  

 

 
 

Figure 1. Elijah’s penny population 

 

The second prompt of the Penny task asked students to think about taking two pennies randomly 

from the population and recording their average year of production. Students were then asked to 

consider the range of possible two-penny averages they would reasonably expect to see and to draw a 

line graph on a new set of x-y axes to represent which averages were more likely than others. The third 

prompt asked students to repeat the second prompt, but to consider taking 10-penny averages. For each 
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of the three prompts, the interviewer encouraged students to share their thinking out loud, offering 

additional scaffolding for each task as needed to ensure students understood what was being asked. 

The Dice task was similar to the Penny task and involved reasoning about outcomes from six-sided 

dice. The first prompt asked students to imagine one million people each rolling a six-sided die and 

recording the number that came up. Students drew a bar graph or line across an x axis labeled 1 through 

6 to report approximately how many rolls they would expect to see across this range of outcomes. The 

second and third prompt were identical to that of the Penny task, except in the context of rolling dice 

instead of selecting pennies out of the population.  

These tasks were chosen carefully to capture student reasoning in two different settings to ensure 

that the resources identified were not specific to the context.. The Penny task, which we hypothesized 

would be more difficult and unfamiliar, was used intentionally to motivate students to draw on their 

own resources. This task was always presented first, because we expected students to be more familiar 

with the dice context and didn’t want students to be able to simply carry over patterns from the Dice 

task to the Penny task without fully engaging in the context of the latter.  

 

3.3.  METHODS OF ANALYSIS 

 

In our analysis, we sought to discover the resources students brought into these tasks on sampling 

distributions. Rather than begin with a pre-existing framework (e.g., Chance et al., 2004, list of 

misconceptions), we took a Grounded Theory-based approach (Corbin & Strauss, 2008) by looking at 

our data and asking, “What is this student getting right?” We began by examining points in the interview 

where students provided a clear claim and justification for that claim. For example, in response to the 

third prompt of the Penny task, Polina claimed “I think the larger sample you take, the more 

representative it will be of all the pennies.” Claims like these, followed by the explanations and 

additional observations students related to these claims, served as the units of analysis for this 

investigation. These statements were identified and categorized through a process of open coding. After 

open coding three interviews separately, the authors then convened to discuss the categories and 

independently coded two additional interviews, meeting again to discuss coding agreement and 

emergence of new codes. The remaining interviews were coded in a similar fashion.  

Next, we summarized and discussed students’ claims and justifications in greater detail. In the early 

stages, we had numerous resource codes, with some focusing more on productive elements and some 

focusing more on shared claims. By examining each interview more comprehensively (beyond the clear 

claims and justifications), we gradually became more comfortable condensing our codes, concluding 

with the list of 10 resources outlined in the Results section. This collection of resources helps answer 

our first research question. 

To answer the second research question, we worked to understand how students coordinated 

multiple resources. The first author read through each interview transcript again and summarized each 

interview in terms of reasoning phases. Each phase was characterized by the resource(s) used in the 

construction of a claim or the direct comparison of two claims. New phases were identified when the 

student changed perspective, or moved on to a new prompt. By examining phases, we identified 

interesting interview vignettes that demonstrate how students blended resources in their constructions 

or grappled with seemingly opposing resources. We constructed explanations to make sense of how 

each student was using resources to come to conclusions and how tension among competing resources 

were ultimately resolved—if resolution occurred. We share three interview vignettes in this paper to 

demonstrate how resources were used collectively to construct more complex understanding, or seemed 

to be irreconciable in other cases. 

In deconstructing the interview phases, the task context appeared to be a central influence on 

students’ reasoning. We created a comparison table (Table 2) to display the resources students used in 

the interviews when reasoning in the Penny task versus the Dice task, revealing marked differences in 

the reasoning used in each context. The answer to our third research question emerged as we attended 

to understanding differences in student reasoning between contexts. We address this question by 

providing a narrative of David’s reasoning, including careful exmination of his work in both task 

settings. Through this narrative, we provide insight into how characteristics of each task apparently 

influenced his reasoning, both from our inferences and David’s own reflections. 
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Table 2. Identified resources 

 
Categories Descriptions Productive application 

Repeated Data 

Values  

Student recognizes that getting the same 

data value (or type) several times in a row 

is unlikely (e.g., I probably would not pick 

up two 2017 pennies in a row or two really 

old pennies in a row). 

Helps student recognize averages at the 

extremes have fewer possible sample 

combinations to produce them. 

 

Modeling 

Likelihoods 

 

 

 

 

Student calculates or reasons about 

likelihoods to generate a response (e.g., 

when rolling dice, there is one way to get 

an average of 1, two ways to get an average 

of 1.5, etc.). 

 

Orients student to a theoretical justification 

for a certain shape. 

 

Average Relates 

to Middle 

Student associates average with middle, 

such as the middle of a sample or middle of 

the population range (e.g., the average will 

be in the middle). 

A symmetrical sample will average at the 

midpoint, which may be an entry point to 

considering what happens with non-

symmetrical samples. 

Average Relates 

to Peak 

 

 

 

 

 
 

Sampling 

Distribution 

Resembles 

Population 

Shape 

 

Student associates average with the peak 

(mode) of the population distribution, 

believing that the position of the peak is 

relevant to predicting where averages will 

cluster (e.g., there are a lot more 2000 

pennies, so we will see more averages at 

2000). 
 

Student sees the sampling distribution 

being responsive to the population shape. 

This may be demonstrated as identical 

reflection between the two, or sharing 

shape attributes (e.g., the sampling 

distribution will also have a dip after 2001). 
 

The position of a peak is a visual cue that 

may help the student decipher where the 

population balances. 

 

 

 

 
 

The position and shape of a sampling 

distribution for a small sample size depends 

on the shape of the population. 

Growing 

Possibilities 

 

 

 
 

Widening 

Range of 

Values 

 

 
 

Stabilizing 

 

 

 
 

Better 

Representing 

Population 

 

 

Student recognizes that there are more 

potential unique samples when we take 

larger samples (e.g., If you just take 2, I 

think it will be clustered around the middle, 

but if you take 50, it could be anywhere). 
 

Student associates larger samples with 

having better representation across the 

range, including outliers (e.g., With 10 

pennies, now I would expect to see some 

really old pennies). 
 

Student uses language that suggests 

stabilizing to describe what happens when 

we take averages from larger samples (e.g., 

the sampling distribution will smooth out). 
 

Student associates larger samples with 

better representation of the population. 

(e.g., With 50 pennies, I would expect that 

to go back to the population shape). 

The number of additional sample 

possibilities grows exponentially as n 

increases. Student may find that values near 

the edges have fewer relative sample 

combinations that produce averages there.  
 

Recognizing the growing range of values 

may be a gateway to seeing how a sample 

that properly reflects the range will average 

at a more consistent balance point. 

 
 

Student may relate the settling nature of 

larger samples to the consistency of 

averages clustering at the balance point.  
 

 

Student may see that better representation 

of the population produces sample averages 

that better represent the population average.  

 

Becoming More 

Accurate 

Student describes larger samples as 

producing and representing something 

more accurate (e.g., With that many 

pennies, my averages should be more 

specific; The average would not be an 

outlier.). 

Student connects the accuracy of larger 

samples to sample averages that more 

accurately converge to the population 

average. 
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 RESULTS 

 

4.1.  RESOURCES IDENTIFIED 

 

In Table 2, we list the 10 resources that emerged from our analysis, each pertaining to students’ 

ideas or approaches to reasoning about the form and behavior of (population and) sampling 

distributions. Alongside, we offer brief descriptions and examples of how the resources were evidenced 

in our data. Also in Table 2, we discuss how each resource could be used productively in developing 

an enhanced understanding of sampling distributions. Although not every productive application in the 

table was observed in the data (e.g., Average Relates to Middle, Average Relates to Peak, Widening of 

Range of Values), we include them to demonstrate how these resources may potentially support deep, 

conceptual thinking. Sections 4.2 and 4.3 demonstrate student examples involving productive 

applications embedded within richer narratives.  

 

4.2.  RESOURCES AS BUILDING BLOCKS 

 

As discussed in Section 2.3, exclusive reliance on individual resources may lead the learner toward 

or away from building a conception that cannot hold under new situations (Smith et al., 1994). For 

example, a student who only associates average with middle will theoretically encounter more 

conceptual difficulties in certain contexts (e.g., viewing a skewed distribution) than a student who sees 

the population’s middle, peak(s), and overall shape as valuable information for determining how sample 

averages are distributed. In this manner, resources may be viewed as tools, where a limited collection 

of tools constrains what students can build, whereas a varied collection of tools can afford students 

more nuanced constructions. Although the utilization of multiple resources does not guarantee a correct 

understanding (as we will see with David’s work in Section 4.3), we do argue that the presence of 

multiple resources can be a platform for productive thinking, with students’ thoughtful blending of 

resources being key to success.  

In our analysis, we found that individual students had varying success in combining and reconciling 

multiple resources into their responses.We now examine moments from Lily, Polina, and Holland’s 

interviews that exemplify both difficulty and success in blending resources. 

 

Lily’s Struggle to Reconcile Resources While reasoning about likely averages from two pennies 

(Penny task, second prompt), Lily faced difficulty determining the shape of the sampling distribution. 

At different points in the interview, she thought the shape of the sampling distribution for averaging 

two pennies might mirror the shape of the population distribution, flatten out, or narrow in the center. 

She felt overwhelmed by the many potential sample combinations, using her fingers to point out the 

seemingly scattered and unpredictable nature of taking samples. Reasoning about averages from 10 and 

50 pennies only exacerbated the numerous possibilities and apparent chaos of representing likely 

averages.  

Lily used the Growing Possibilities resource as a common justification for several different 

conclusions. She initially used it to support her feeling that the sampling distribution would return to 

the population shape: “I just feel like, it would kind of … go back to this [population distribution].” She 

also used this resource as justification for a uniform shape: “If you pick like a penny, 1900, 2017, and 

then you pick eight of them in here [between], I feel like, it kind of could go anyway, I feel like the 

range … would it be like more evenly distributed?” 

The Becoming More Accurate resource was used separately from the Growing Possibilities 

resource. Lily noted that as the sample size increases, you are less likely to observe sample averages on 

the extremes of the domain: 

 
Lily: I feel like if you did more, I feel like compared to [n = 2], it would do that same little bell cluster, 

just because the major quantity is around, like around here [middle], so I feel like if you had 10 

pennies, like what are the odds that you’re going get 10 pennies all the way over here [left], or 

10 pennies all the way over here [right]. 

 



34 

 

Lily indirectly used the Repeated Values resource to justify this movement towards accuracy. 

However, Lily again wavered as she returned to her previous solution path: 

 
Lily: I feel like it would just kind of keep getting more narrow 
Interviewer: Ok, do you think you could draw what you imagine happening … with like 50 pennies at a 

time? 
Lily: Or I feel like honestly, it would kind of get more, even. Even. 

Interviewer: So when you say even, what kind of motivates that? 
Lily: If it’s two, then it’s more likely to be clustered around the median I guess, but if you’re doing 

like 50, you could take 20 from [right], 10 from [middle], and another 20 from [left], and it 

would kind of even out, and still be in the middle. Or you could take 30 from [right], 5 from 

[middle], and 15 from [left]. 

 

In this exchange, Lily felt these two resources tugging her in different directions. However Lily never 

did reconcile the two, and ultimately selected the Growing Possibilities resource when justifying her 

final answer, rather than finding an answer that balanced both notions. 

 

Polina’s Tension Between Resources Polina experienced tensions in reasoning as she pondered the 

distribution of the sample average from rolling 10 dice. She was comfortable with the sampling 

distribution for two dice after utilizing the Modeling Likelihoods resource and generalizing about the 

emerging pattern. She drew a bell curve to represent her findings: “It’s like there’s less combinations 

to get an average of a 1 and a 6, and then there’s more [combinations] as you go towards the middle.” 

 As she pondered the averages from samples of size 10, Polina initially stated that “more of the middle 

ones” would be represented, to which the interviewer probed further:  

 
Interviewer: When you say represent more of the middle ones, you mean represent the same way that [n = 

2] does, or do you mean represent it even more than it did before? 

Polina: Like 2 to … yeah even more than it did before probably … or no, it would more widely represent 

I think, the sixes and the ones because it’s a higher sample, so it’s going to be more 

representative of the population. 

 

Here, Polina experienced a tension between different sets of resources she viewed as taking her in 

two different directions. She knew probabilistically with two dice, there were more combinations 

yielding averages in the middle of the domain. She also knew that larger samples could yield more ones 

and sixes, reflecting the Widening Range of Values resource. She ultimately reconciled these two 

divergent patterns of thinking: 

 
Polina: I think the more dice rolls that you have, there is going to be more like sixes rolled and, or averages 

and 1 averages…but I think in general, like even more so, it will show even more of this [middle]. 

 

By attempting to reconcile these different resources, Polina grappled with important conceptual 

ideas, creating a space for deep statistical reasoning. She realized that for all of the additional 

combinations that would produce extreme averages, there would be even more combinations added that 

represented middle averages. Thus, each of these resources could each be applied in this context and 

aligned with the conclusion that averages would cluster in the middle.  

 

Holland’s Successful Blending of Resources Holland articulated several different resources during 

the Penny task that seemed to fit together like puzzle pieces in her constructions. When she began 

reasoning about the sampling distribution for two pennies, she used the Repeated Values resource to 

reason that you were not likely to find averages at either end of the range: “I think that the chance of 

getting two 2017 ones in a row is kind of difficult. I really don’t think I’ve ever had a penny where I’m 

like, ‘oh this one’s from 1972,’ and ‘oh this one’s also from 1972.’” She initially drew a centered and 

fairly narrow bell curve, explaining that averages were more likely to appear in the middle (suggesting 

she used the Average Relates to Middle resource).  

When she began her construction of the sampling distribution for selecting 10 pennies, she revised 

her thinking: 
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Holland: Oh, I wonder, here let’s make [n = 2 distribution] a little more inclusive … my new graph for this 

one’s going to be a little more inclusive and have, well maybe you did find really cool pennies! 

… and then this one’s since it’s 10 pennies, I think it’s less inclusive. 

 

She redrew her construction for n = 2 to be a much wider, rounded peak, then created a more well-

defined peak for n = 10 along with wide, but flattening tails. 

 
Holland: The average, I feel like, must be a lot more central if you’re taking [larger samples] versus with 

[smaller samples]. You do have more flexibility, which is why I made [n = 10] to include more, 

and like, the widths I guess … but if you’re taking 10 at a time, I think that there’s, more, umm, 

more likely to get an average I guess, like it’s more specific almost? ... it will be more difficult to 

get an average that’s an outlier if you have a larger group to look at. 

 

Holland balanced three resources that, together, created a powerful tool for reasoning. First, she 

discussed averages as Becoming More Accurate with large samples. She also discussed samples of size 

10 as having more flexibility, reflecting that in her graph by letting the tails extend out across the entire 

range, but keeping them fairly low. This second statement was coded with the Growing Possibilities 

resource. However, Holland still balanced this greater sample flexibility with more defined peaking in 

the averages, describing these larger sample averages as being more specific. She paired her recognition 

of the Growing Possibilities resource to the resource she articulated earlier, that Repeated Values are 

harder to obtain. This synthesis of different ideas gave her confidence in her belief that averages would 

cluster more clearly at a central point. 

 

4.3.  INFLUENCES FROM PROBLEM SETTING AND CONTEXT 

 

Overview As we look at how and where resources were articulated across the interviews, it became 

clear that the resources students elicited differed by context and problem setting. This contrast in 

contextual reasoning spaces prompted interesting discussions and comparisons for students as they 

sought to reconcile or explain the sometimes diverging conclusions they made in these two settings. In 

Table 3, we provide a snapshot of how often each resource was elicited across the interviews for both 

the Penny task and the Dice task.  

 

Table 3. Number of students eliciting each resource in each task 

 
Resources Penny Dice 

Repeated Values 4 5 

Modeling Likelihoods 0 4 

Averages Relates to Middle 5 1 

Average Relates to Peak 5 0 

Sampling Distribution Resembles Population Shape 4 4 

Growing Possibilities 2 3 

Widening Range of Values 3 3 

Stabilizing 2 0 

Better Representing Population 2 2 

Becoming More Accurate 6 5 

 

One difference in resource elicitation between the two contexts was students’ use of Modeling 

Likelihoods in the Dice task. We attribute this to several context-specific characteristics of the Dice 

task that facilitated the use of this resource. The first was the limited number of values that students had 

to consider when reasoning about dice rolls with n = 2. For example, Mika struggled to conceive of 

likely 2-penny averages in the second prompt, but oriented herself quite quickly to the same prompt in 

the Dice task: “In this situation, you can have, like, in between numbers right? Because … if they roll 

1 and 3, the average would be … two!” By only needing to consider the different combinations possible 

with six values, Mika and others could manageably name and calculate the probability of each possible 

average, or reasonably approximate some values as less likely than others. 
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Furthermore, students expressed certainty about the dice population distribution (uniform). This 

was in stark contrast to the uncertainty students had with their penny population distributions: almost 

every student questioned and redrew their penny population after having moved on to the sampling 

distribution prompts. The Dice context allowed Mika and others to make quick average calculations, 

whereas the Penny task required a more abstract, conceptual approach.  

The students were more likely to make associations between average and middle or average and 

peak when reasoning about pennies. The fact that students’ dice population distributions were all 

uniform, and had no peak, is an easy explanation for why students did not typically elicit these resources 

in that context. Furthermore, students’ inability to calculate probabilities with pennies left them to 

depend on characteristics of the population shape to justify their constructions. The remaining resources 

varied little in elicitation between contexts. We note that the Stabilizing resource was used only in the 

context of pennies—by only two students—but we see no reason why this resource could not have been 

elicited with dice. 

As discussed in Section 3.2, all students completed the Penny task before the Dice task. It is 

possible, therefore, that students may have approached the Dice Task differently if completed first or 

independently. The students we interviewed, however, did not of their own accord refer to their work 

with pennies to justify their work with dice. Students only explicitly related their reasoning between the 

two contexts when prompted by the interviewer, after having completed the Dice task. Typically, when 

students began the Dice prompt, they recalled terms like experimental and theoretical probability, or 

mentioned an experience playing a game, as if changing gears in their head to orient themselves to the 

new task. 

Whereas the overall accounting of resources revealed only limited insight on differences between 

the task contexts, we did find noteworthy differences when focusing on individual students. In 

particular, we look at David’s reasoning. Although David was one of two students who had previously 

taken an AP statistics course, he was four years removed from that course and self-reported having little 

to no recall of the course content. Although we cannot truly gauge the influence of this prior course on 

his reasoning, we do note that David expressed much cognitive dissonance throughout the interview, 

suggesting that he was grappling with conceptual ideas rather than applying recalled answers. We chose 

to highlight David because he articulated interesting tensions in his reasoning and elicited a diverse set 

of resources in both tasks. Furthermore, we believe his responses can be clearly linked to certain 

characteristics within each context to demonstrate how context shaped his thinking. 

 

David’s Reasoning with Pennies Like others, David believed that recently minted pennies would 

appear most commonly in circulation, with the frequency decreasing steadily across time. His proposed 

population distribution is shown in Figure 2. 

 

 
 

Figure 2. David’s population distribution for pennies 

 

After reading the second prompt (averages from two-penny samples), David drew a candidate 

distribution with little hesitation. His drawing demonstrates a clustering of sample averages closer to 

the middle-right of the range (Figure 3).  

 
David: If this initial one is correct that there’s more in circulation in current times, you’ll get a higher 

average than you would lower, so this [older end] should even be near 0, getting two of the same 

lowest year. 

Interviewer: [pointing] 2017 is also low, would that be for the same reason that 1960 is the lowest? 
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David: I’m taking 2017 as, it’s like only that year, so it would be lower because finding a penny of the 

same year would be not statistically easy … so having two 2017 pennies will be harder to reach 

than getting say a 2001 and a 1991. 

 

David used the Sampling Distribution Resembles Population Shape resource when he attributed the 

concentration of pennies on the right to influencing the placement of penny averages similarly. David 

constructed a graph that was not identical to the population (showing some recognition of the change 

in variabiltiy), but certainly responsive to its shape. He also implemented the resource Repeated Values 

by stating that getting two 2017 pennies was the only way to get an average of 2017, making that 

average hard to obtain. He likewise considered old pennies to be similarly unlikely. 

 

 
 

Figure 3. David’s sampling distribution for n = 2 

  

When David moved to reasoning about averages from samples of size 10, his reasoning shifted. He 

drew a sampling distribution that peaked more in the middle of the range and elicited a new set of 

resources to justify his construction.  

 
David: So in [the n = 2 construction], there are more in circulation in these higher [years], so the chances of 

finding these is higher in a 2 survey, or a 2 average, so it’s skewed higher. But since you’re doing a 

10 average here, there’s more chances of getting ’80, ’70, and ’60 coins. 

 

Here, we see the Widening Range of Values . He then tied in an additional resource, explaining: 

“You just have more in the sample, so you get a better average rather than two pennies.” In this response, 

David elicited the Becoming More Accurate resource to relate the increasing sample size to improved 

confidence in the sample averages produced. However, his conception of accuracy in this case was tied 

to finding averages better representing all parts of the range. 

When asked about the shape of the sampling distribution for n = 50 or more, David described this 

curve as being more level, more gradual, and less steep, though he did not see this curve ever reaching 

a flat line (Figure 4). The language used here suggested he viewed Stabilizing as a resource for 

understanding the behavior of large sample averages. Furthermore, David explained that the larger 

samples would produce averages that peak closer to the center of the range as they would contain a 

wider selection of pennies, whereas the smaller sample averages would still peak slightly right of middle 

to reflect the population shape. Here, David drew from the Becoming More Accurate resource to justify  

 

 
 

Figure 4. David’s sampling distributions for n = 10 (black) and n = 50 (pink) 
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this central position while pulling from the Widening Range of Values and Stabilizing resources to 

justify the extended, smooth shape.  

In summary, David began with the resource Sampling Distribution Resembles Population Shape, 

but with more clustering away from the ends due to his resource that Repeated Values are less likely. 

For the sampling distributions with larger sample sizes, David focused on how these samples would 

include a Widening Range of Values while also Stabilizing in the form of a flatter distribution. He 

viewed these averages Becoming More Accurate in representing the range by beginning to peak in the 

center rather than to the right.  

 

David’s Reasoning with Dice David knew that when rolling one die, all six possible values were 

equally likely to appear. As he moved on to reasoning about averages from two dice rolls,the 

probabilities of each of the possible values became less clear. 

David began responding to the n = 2 prompt with the Sampling Distribution Resembles Population 

Shape resource: “Wouldn’t it just be the same because it’s a 1 in 6 chance of hitting … because you’re 

averaging them, not adding them together, so it’s not a different probability of hitting higher numbers 

or lower numbers.” He struggled to move on to the next prompt because “his gut” told him it should be 

bell-shaped. By imagining playing a game that involves rolling two dice, David expressed that rolling 

doubles was always less likely than rolling non-doubles (Repeated Values), leading him to wonder 

whether averages of 1 and 6 must be less likely. His drawing representing these thoughts is found in 

Figure 5.  

 

 
 

Figure 5. David’s sampling distribution for n = 2 

 

He began responding to the n = 10 prompt by stating, “I’m thinking [n = 2] is wrong, again … 

hitting, 1 ten times seems a lot lower than hitting 10 random numbers, which makes me think this [n = 

2] should be slightly different. Similar to a bell curve distribution.”  

His next statement tied together the Repeated Values resource with the resources of Better 

Representing Population, Widening Range of Values, and Becoming More Accurate. 

 
David: Taking the average of all of them, it will be more likely to hit a bunch of different, each one of them 

equally, which should average out to between 3 and 4, so 3.5, then it would be to hit 6 or 1 or really 

any of them, 10 times in a row. 

 

Here, David recognized that a larger sample would contain a more diverse collection of values (“hit 

a bunch of different [numbers]”), aided by the fact that all values have an equal chance of being rolled 

and represented in larger samples. From here, he was able to turn his attention to the likely position of 

the averages. Recognizing that rolling the same number again and again would be less likely helped 

pave the way to seeing large-sample averages clustering in the middle and not near the ends. When 

asked what he believed would happen as we increased the sample size, David said that the middle would 

continue to peak higher and the ends would continue to drop lower, leading to a divergence in 

conclusions between his responses in the Penny task and those in the Dice task.  

Table 4 provides a comparison summary of David’s elicited resources in both tasks—italics indicate 

differences in resources elicited by the tasks. 
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Table 4. A comparison of resources for David’s reasoning with pennies and dice 

 
Prompt Penny Resources Dice Resources 

n = 2 - Repeated Values 

- Sampling Distribution Resembles 

Population Shape 

- Repeated Values 

- Sampling Distribution Resembles 

Population Shape 

 

n = 10 

 

- Sampling Distribution Resembles 

Population Shape 

- Widening Range of Values 

- Becoming More Accurate 

 

- Repeated Values 

- Better Representing Population 

- Widening Range of Values 

- Becoming More Accurate 

 

n = 50+ 

 

- Widening Range of Values 

- Becoming More Accurate 

- Stabilizing  

 

- Widening Range of Values 

- Becoming More Accurate 

- Better Representing Population 

- Repeated Values 

  

Summarizing David’s Reasoning The summary table reveals that David elicited a similar—but not 

identical—progression of resources in both reasoning contexts, yet ultimately came to different 

conclusions. David instinctively related the sampling distribution shape with that of the population as 

a first step in both tasks. He also built on the knowledge that getting the same data value repeatedly 

should be less likely. When reasoning about larger samples, he recognized that larger samples would 

include a wider, more “representative” collection of values, but found this resource to bring different 

implications in each task. With the Penny task, he believed this wider sample range should produce 

averages that would stretch to include all values, with accuracy coming into play to explain the position 

of the peak. In the Dice task, however, David believed large samples containing uniformly 

representative values from 1 to 6 would produce more accurate averages that visibly cluster in the 

middle of the range.   

When given the opportunity to revisit the prompts in the Penny task after completing the Dice task, 

David said “Dice are about probabilities, and we know the probability of a 6-sided die, but here, at least 

I’m not familiar with the probability of picking up a penny and knowing what the year is going to be.” 

It seemed the added assurance of knowing the uniform probabilities of dice rolls provided fewer 

unknowns to wrestle with. Without such assurance in reasoning about pennies, David struggled to look 

beyond the content of the samples he might get and conceptualize what averages would be produced 

from these wider samples. 

When picturing what might happen as the sample size continued to get larger and larger, David 

continued to see the shape of the population as significant in the context of dice, but not pennies. The 

skewness and uncertainty of the penny population pushed him to conceive of a stabilizing and 

smoothing result. David did not discuss stabilization with dice, seemingly because no stabilization and 

smoothing was necessary. Dice averages were clustering in the center from even the smallest samples 

in his drawings, and the fact that the dice population was already perfectly smooth left no room for the 

sampling distributions to become smoother. We speculate that the simplicity of the dice context aided 

him. His surety in the uniform population distribution allowed him to use this resource confidently in 

his constructions. This contrasted with his uncertainty in the penny population distribution.  

 

 DISCUSSION 

 

5.1.  CONTRIBUTIONS AND LIMITATIONS 

 

In this paper, we have used a  Knowledge in Pieces approach (diSessa, 1988) to identify resources 

that students elicit when reasoning about sampling distributions. As we compare our findings with 

insights in the literature, we see that many of our resources resonate with common student 

misconceptions. For example, Chance et al. (2004) noted that students believe the sampling distribution 

should look more like the population as sample size increases, which corresponds to one of our 

identified resources. Our research extends insights from the literature by uncovering the more 
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fundamental observations behind these common misconceptions and investigating how these 

observations can be mended productively. 

We take an approach similar to that of Kahneman and Tversky (1972) in looking for heuristics that 

can be used as building blocks for conceptual models. We believe the resources we identified 

complement more recent work that has identified different perspectives and modeling approaches 

students have taken with respect to reasoning about sampling distributions (e.g., Braham & Ben-Zvi, 

2017; Pfannkuch, Arnold, & Wild, 2015; Prodromou & Pratt, 2006). Whereas these studies discussed 

larger frames of thinking that students expressed across instructional sequences, this paper presents 

more fine-grained resources we believe undergird the perspectives students take. For example, 

Prodromou and Pratt (2006) found many students reason about sampling distributions through either a 

data-centric perspective or a modeling perspective, rather than a thoughtful blending of the two. 

Research and instruction may understand students’ perspectives with more depth by probing the specific 

resources students activate when taking each of these perspectives and how the illumination of 

alternative resources may bring about a more balanced perspective. For example, in the case of a student 

holding a data-centric perspective, the instructor might offer the notion of stabilization with large 

sample averages to elicit a new perspective for the student to consider. Students who focus on the shape 

of the population to determine the shape of the sampling distribution may further their thinking by 

considering how accuracy may be linked to larger sample sizes. Further research on instruction through 

the lens of resource blending may inspire new insights on learning trajectories. 

Our findings support existing research by noting that conceptual progress depended on explicit 

reconciliation of multiple perspectives (Pfannkuch et al., 2015; Prodromou & Pratt, 2006). It was 

through thoughtful blending of resources that students were able to see how all of these pieces could fit 

together in a unified model. Interview excerpts from Holland and Polina provided detailed looks at how 

resources could be tied together to create new, more complex conceptions of the situation. For example, 

Holland’s recognition of the widening range of values in larger samples paired with recognition that 

repeated extreme values were unlikely solidified her belief that the averages these samples produced 

would become more specific and cluster in the center. In contrast, Lily struggled with the tasks, hitting 

a roadblock in reconciling two resources that she believed could not both be true and cohesively tied 

together in a construction.  

Additionally, our findings enhance current understandings of contextual influences on students’ 

statistical reasoning (Pfannkuch, 2011). We noted characteristics about each problem that led students 

to notice different things and ultimately take dissimilar reasoning paths. David’s work demonstrated 

contextual divergence as he used similar but distinct sets of resources to come to different conclusions 

about the sampling distribution shape for pennies and dice. David was more comfortable in the Dice 

task due to his confidence in the population shape and his discovery that averages from two dice were 

not probabilistically equal. These scaffolds in the dice context freed him to focus on the averages these 

samples would produce. The ambiguity of the penny population left him uncertain in his responses as 

he tried to juggle multiple considerations.  

The scope of our findings, however, is somewhat limited by the design of our study. With a more 

diverse set of tasks, it is possible that students would have utilized a more varied set of resources. 

Additionally, our sample of only eight undergraduates from a large, public university is not 

representative of undergraduate students as a whole. As such, the resources used by these students are 

likely not comprehensive and may differ in prevalence from the resources used by students in different 

schools, majors, or academic levels.  

Finally, each student received the penny task first and the dice task second. Our particular study 

was not designed to compare differences in ordering of tasks, which then limits our understanding of 

how task ordering influences elicitation and development of resources.  

 

5.2.  CONCLUSION 

 

In her book The Having of Wonderful Ideas, Duckworth (2006) stressed the importance of being 

sensitive to student thinking by giving students the resources, space, and trust to engage with their own 

questions. By searching for the resources students activate, rather than simply the misconceptions they 

articulate, we believe instructors will be better attuned to support students’ conceptual progress. 

Effective instruction should aptly respond to students’ ideas, creating opportunity for students to 



41 

 

conduct thought experiments that may include incorrect notions along the way (Garfield & Ben-Zvi, 

2009). Learning environments that appropriately elicit and support students’ ideas toward productive 

ends—as opposed to writing over students’ incomplete notions and questions—will be rich with 

possibilities for growth (Cobb, 1994). 

Although our study did not specifically investigate the role of computer simulations in students’ 

conceptual understanding, we view the resources we identified as worthwhile considerations across an 

instructional sequence that includes simulations. As Garfield et al. (2015) discussed from the extensive 

research on this topic, informal reasoning prior to the use of simulations often prompts students to 

conceptual ideas and limits the possibility of tacit acceptance of simulated results. Future work may 

investigate how the identification and prompting of an array of cognitive resources can support more 

productive student interaction and discussion of simulated results.  

Our findings also point to the importance of choosing context carefully in the creation of 

instructional tasks. In particular, the familiar, manageable setting of the Dice task provided a fairly safe 

conceptual space for students to grapple with multiple resources, whereas the ambiguous Penny task 

required more abstract thinking. We wonder how a task in between the two (e.g., a fixed sample space 

with a non-uniform distribution) may elicit a different mixture of resources. Future research is needed 

to further understand how the settings of multiple contexts, or the sequencing of multiple tasks, can 

influence students’ elicitation and blending of resources toward generalizable, conceptual models of 

sampling variation. 
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APPENDIX 

 

Think about the age of pennies in circulation (pennies in cash registers or people’s money wallets and 

purses). What is the range of penny years that we would see in circulation? Label in a few more years 

and draw a line to represent how many pennies you would expect there to be across the range of penny 

years. 

 

 

 

 

 

 

 

 

2017 
 

Now think about if we were to take 2 pennies randomly from circulation and find their average age. If 

we repeatedly did this and collected a list of 2-penny averages, then what would be the range of averages 

we would see? Fill in more years and again draw a line to represent how many of each average would 

we see. 

 

 

 

 

 

 

 

 

2017 
 

Do the same task we did above, but this time think about taking 10 pennies at a time instead of 2.  

 

 

 

 

 

 

 

 

2017 
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Think about rolling a regular, six-sided die. If we had one million people each roll a six-sided die, how 

many of each outcome would you expect to see? 

 

Draw a column graph below to represent how many of each outcome you would expect. 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 

 

Now imagine each of these one million people each rolled 2 dice and took the average value. Think 

about the averages we would see. How many of each 2-dice average do you expect to see? Create a 

column graph. 

 

 

 

 

 

 

 

 

 

  

 

Now imagine each of these one million people each rolled 10 dice and took the average value. Draw a 

line plot (density curve) to represent the averages we would expect to see most often. 
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