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ABSTRACT 
 

Training programs for statisticians and data scientists in healthcare should give greater 
importance to fostering inductive reasoning toward developing a mindset for optimizing Big 
Data. This can complement the current predominant focus on the hypothetico-deductive 
reasoning model, and is theoretically supported by the constructivist philosophy and Gestalt 
theory. Big-Data analytics is primarily exploratory in nature, aimed at discovery and 
innovation, and this requires fluid or inductive reasoning, which can be facilitated by 
epidemiological concepts (taxonomic and causal) as intuitive theories. Pedagogical 
strategies such as problem-based learning (PBL) and cooperative learning can be effective 
in this regard. Empirical research is required to ascertain instructors’ and practitioners’ 
perceptions about the role of inductive reasoning in Big-Data analytics, what constitutes 
effective pedagogy, and how core epidemiological concepts interact with the evidence from 
Big Data to produce outcomes. Together these can support the development of guidelines 
for an effective integrated curriculum for the training of statisticians and data scientists.  
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1. INTRODUCTION 
 
The quote: “We adore chaos because we love to produce order” from M. C. Escher (as cited 

in Lamontagne, 2003. p. 71) aptly reflects the intricacies, novelty, and challenges of Big Data, 
in a culture of pervasive digitization of information and the internet of things, where “N = All” 
(Harford, 2014, p. 17), and just about any relationship can be rendered statistically significant 
(McAbee, Landis, & Burke, 2017). Of foremost consideration therefore, are validity and 
confounding (Stricker, 2017; Ehrenstein, Nielsen, Pedersen, Johnsen, & Pedersen, 2017). The 
Big-Data concept has been exponentially evolving for close to two decades (Laney, 2001) with 
a general focus on automated decision support (Monteith & Glenn, 2016). It has infiltrated 
academia, industry, and government, becoming an inescapable phenomenon for growth and 
development (Taylor & Schroeder, 2015).  

Albeit lagging other disciplines (Sacristán & Dilla, 2015), the upward trend in the use of Big 
Data holds for healthcare including clinical and public health, with the mantras of translational 
medicine (Jordan, 2015) and evidence-based practice (Lehane et al., 2018). These themes are 
the focus of biomedical informatics, which has been characterized as “big data restricted to the 
medical field” (Holmes & Jain, 2018, p. 1). Biomedical informatics has an interdisciplinary 
reach and encompasses data linkage, integration, and analysis (Kulikowski, 2012; Walesby, 
Harrison, & Russ, 2017), toward efficient and effective clinical decision making (Kyriacou, 
2004). Areas of application include genomics, disease surveillance, medical imaging (McCue & 
McCoy, 2017), and to a lesser extent, treatment and vaccine development. One domain, in 
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which Big Data has been particularly impactful, is disease surveillance including Influenza, 
Ebola, and Zika (Chowell, Simonsen, Vespignani, & Viboud, 2016, p. 376): 

 
Infectious disease surveillance is one of the most exciting opportunities created by Big Data, because 
these novel data streams can improve timeliness, and spatial and temporal resolution, and provide 
access to “hidden” populations. These streams can also go beyond disease surveillance and provide 
information on behaviors and outcomes related to vaccine or drug use. 
 
Indeed, effective surveillance and control of infectious diseases requires rapid and 

comprehensive data collection. Population movement and behavior are central in this regard, 
and “premium is placed on information that is more recent and granular” (Dolley, 2018, p. 3). 
Thus, access to large volumes of real-time digitized information from various sources of Big 
Data such as mobile phones (and GPS software), electronic health records, social media, and 
travel records are pivotal to stemming an epidemic, as was the case for the Ebola outbreak in 
West Africa (Fast & Waugaman, 2016). The advent of Big Data has given renewed emphasis to 
evidence-based practice. 

Evidence-based practice (EBP) in healthcare has a long and controversial history 
(Tanenbaum, 2005), and is generally defined as “the conscientious, explicit, and judicious use 
of current best evidence in making decisions about the care of individual patients” (Sackett, 
1997, p. 1). EBP within the health professions has a predominant focus on the use of evidence 
from experimental studies (Krumholz, 2014; Meza & Yee, 2018), which can allow for directly 
implying causality, the cornerstone of diagnosis, treatment, and prognosis (Russo & 
Williamson, 2011). Big Data, however, is typically characterized by correlations rather than 
causal relationships, which could explain the health sector’s slow embrace of Big Data 
(Sacristán & Dilla, 2015). Nonetheless, Big Data is touted as having the potential for 
personalized and precision medicine (Mayer, 2015). Indeed, data from correlational studies can 
contribute to causal reasoning and understanding, using fundamental evaluation and organizing 
frameworks, such as the Bradford-Hill criteria (Phillips & Goodman, 2004) and the 
epidemiological triad (Galea, Riddle, & Kaplan, 2009).  

As is typical of paradigm shifts, Big Data is fraught with controversies, with some viewing 
it as a promise “for revolutionizing, well, everything” (Harvard, 2012, p. 17; Bansal, Chowell, 
Simonsen, Vespignani, & Viboud, 2016; Lee & Yoon, 2017) while others consider it to be just 
noise, a “big mistake” (Harford, 2014, p. 1), or nothing new (Bellazi, 2014). Although there is 
no consensus as to a definition of Big Data, what is obvious is that it is about size, that is, data 
that is too large to be processed using conventional statistical methods and software, and hence 
requires innovative expertise to generate actionable evidence (Dinov, 2016). Implicated here, 
are artificial intelligence (AI), machine learning (ML), and human cognition. Notably, such 
technological tools (AI and ML) lack “contextual reasoning ability” (Singh et al., 2013, p. 2), 
and this can result in spurious correlations and other outcomes. 

 
 

2. PURPOSE, RATIONALE, AND SIGNIFICANCE 
 
This paper argues that inductive reasoning is a necessary cognitive tool for efficient and 

effective Big-Data analytics, and should be given greater importance in training programs for 
statisticians and data scientists in healthcare toward developing a mindset for optimizing Big 
Data, and supporting evidence-based practice. In addition to augmenting our understanding of 
Big Data, incorporating strategies for inductive reasoning into the instructional repertoire can 
help to meet the diverse cognitive preferences of learners. This is discussed with attention to the 
current predominant focus on the hypothetico-deductive reasoning model, considered a closed 
or circular system of logic. It is noted that Big-Data analytics is primarily exploratory in nature, 
aimed at discovery and innovation, and that this requires fluid or inductive reasoning.  
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The constructivist philosophy of learning and Gestalt theory are posited as a theoretical 
framework that supports inductive reasoning as a basis for effective learning and practice. Two 
epidemiological concepts, the epidemiological triad (a taxonomic model) and the Bradford-Hill 
criteria (a causal reasoning model) are proposed and discussed as conceptual models, which can 
serve as intuitive theories for inductive reasoning in Big-Data analytics. A distinction is made 
between inductive reasoning as a creative process of the mind, and inductive inference, a rigid 
mathematically determined procedure. Artificial intelligence and machine learning are 
addressed with the view that the power of Big Data and advanced technology does not reduce 
the need for human reasoning. 

Furthermore, the discussion supports the call for reform in statistics education (Ridgway, 
2016), regarding what constitutes competent practice of statistics and data science. We are 
witnessing exponential growth in Big Data, and exploring its complex structure for novel 
insights requires diverse expertise beyond what is typically used with traditional data sets. 
Therefore, it is critical that the needs of Big-Data analytics be addressed by academic 
institutions and professional organizations when developing criteria for recruiting and preparing 
the next generation of statisticians and data scientists. Outreach strategies should address the 
varied knowledge and skill sets, as well as disciplinary background that can provide a strong 
foundation to become a competent statistician working with Big Data. Such messages should 
emphasize the importance of obtaining a holistic perspective of data including contextual 
understanding, rather than the status quo, which tends to focus almost exclusively on the 
hypothetico-deductive model and mathematical procedures. 

Notably, the characterization and widespread perception of statistics as mathematics is 
associated with high levels of anxiety and fear among some students and prospective candidates 
(Luttenberger, Wimmer, & Paechter, 2018), and this can be a major barrier to pursuing a career 
as a statistician or data scientist. Hence, outreach strategies should highlight the necessary and 
important role of inductive reasoning or creative thinking in Big-Data analytics, as this can 
generate greater interest in the discipline from diverse groups, and help to mitigate the dearth of 
qualified personnel. 

 
 

3. BACKGROUND 
 

3.1 CONCEPTUALIZING BIG DATA 
 
The term Big Data is undoubtedly a universal and evolving concept that has become a 

metaphor for discovery and innovation (Krumholz, 2014) through the application of advanced 
analytics to massive amounts of complex data. While the terms Big Data and Big-Data analytics 
are generally used in a synonymous sense, the latter refers to the modern tools, methods, and 
procedures used for making sense of Big Data. A key assumption is that the size and complexity 
of Big Data render it rich with insight and intelligence, which cannot be obtained using 
traditional data sets and technology (Church & Dutta, 2013; Bellazzi, 2014). However, there is 
no standard definition (Walesby, Harrison, & Russ, 2017; Lefèvre, 2018), and this is consistent 
with the view that Big Data is not monolithic in terms of composition and architecture, as well 
as technological and analytical needs, and hence its conceptualization could vary across 
disciplines, time, and contexts, in order to be relevant and beneficial (Auffray et al., 2016).  

Nonetheless, there are core features known as the Vs of Big Data (Russom, 2011). That is, 
Big Data constitutes massive amounts or Volumes of data, potentially on the scale of terabytes, 
petabytes, or exabytes (Panda, 2016; Chang, 2016), from a Variety of sources and in various 
forms, mostly unstructured (Bamparopoulos, Konstantinidis, Bratsas, & Bamidis, 2016) but also 
semi-structured and structured, and is accumulated at high speed or Velocity, primarily through 
digitization of information. A fourth feature, referred to as Veracity, was subsequently 
recognized by Big-Data practitioners to give emphasis to data quality in terms of reliability and 
validity, recognizing the uncertainty and messiness of Big Data (Koutkias & Thiessard, 2014). 
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Moreover, Big Data may be static or dynamic, and its high magnitude, dimensionality, and 
complexity require innovative data-analytic procedures and technology to obtain useful 
information (Chen, Chiang, & Storey, 2012).  

The largely unstructured or fluid nature of Big Data puts it primarily in the domain of 
exploratory data analysis (Chauhan & Kaur, 2015) including predictive analytics and data 
mining. Big Data does not typically refer to large conventional (relational) databases, with 
structured data existing as well-defined variables, collected to examine specific a priori research 
questions, objectives, or hypotheses. Also, although SQL (Structured Query Language), a 
standardized programming language, supports large volumes of data, it does not technically 
allow for optimal solutions for the existing and emerging needs of Big-Data analytics, in terms 
of speed, scalability, availability, and consistency (Binani, Gutti, & Upadhyay, 2016). 

The various definitions of Big Data reflect a continuum from the mechanistic, which 
focuses on data size, algorithms, and technology, primarily AI-driven machine learning (Jain, 
2017), to the pragmatic, which in addition to data size and technology, emphasizes data quality 
and decision-making (Bellazzi, 2014; McAfee & Brynjolfsson, 2012), as well as ethical and 
privacy considerations regarding linking, storing, transferring, and sharing data (Lefèvre, 2018; 
Walesby, Harrison, & Russ, 2017). The conventions that practitioners adopt will influence how 
they conceptualize and operationalize Big-Data analytics, and hence determine the quality and 
utility of the knowledge that is derived from Big Data. The core features, Volume, Variety and 
Velocity, make Big Data inherently messy, with concerns about Veracity; hence uncertainty 
abounds in terms of the insight and meaning that can be derived from the data.  

The major challenge for Big-Data analytics practitioners is to separate the signal (the useful 
information) from the noise or interference (Ehrenstein, Nielsen, Pedersen, Johnsen, & 
Pedersen, 2017), and this encompasses proficiency in interpreting and explaining observed 
correlations and patterns, as well as meaningful conceptualization of the data for exploratory 
analysis. In essence, Big-Data analytics is largely about decision-making under uncertainty and 
complexity, and best practice requires interdisciplinarity and collaboration (Panda, 2016; 
Mayer, 2015; Harford, 2014). More importantly in this regard, is a need to shift from the 
predominant rigid deductive reasoning approach to more inductive and fluid reasoning (Ferrer, 
O’Hare, & Bunge, 2009) as supported by the constructivist philosophy in terms of knowledge 
production and meaning-making (Malle, 2013). This need is particularly evident with pattern 
recognition using data visualization maps, a major Big-Data analytic technique. Inductive 
reasoning fosters thinking beyond existing schemas, including simplistic linear and reductionist 
approaches, which do not capture the realistic complexity of health and behavioral phenomena 
(Cavanagh & Lane, 2012; Krumholz, 2014).  

 
3.2 EXTRACTING VALUE FROM BIG DATA  

 
The value of Big Data goes beyond its size, to its multidimensionality and complexity, the 

unraveling of which is the domain of data mining and machine learning (ML), driven by 
algorithms premised on assumptions about the latent knowledge that can be uncovered (Lee & 
Yoon, 2017; Bellazzi, 2014). Machine learning, a cognitive technology application, is a variant 
of artificial intelligence (AI), in which computer systems are initially “trained” or “supervised” 
by data scientists “to think” using large and varied data sets (NIH, 2018) and utilizing 
techniques such as pattern recognition, correlation, regression, multidimensional scaling, and 
cluster analysis. The computer algorithms “learn” from examples to deduce outcomes or objects 
based on predictive features or characteristics of labeled input information, much like deep or 
conceptual learning. This capability can then be transferred to other contexts to gain insight. It 
is an iterative process that allows computer models to independently adapt and explore when 
exposed to new data, rather than having to be specifically programmed. The IBM Watson is the 
foremost example to date of ML (Chen, Argentinis, & Weber, 2016). 

Indeed, what we program (as in computerized algorithms) determines what we get, visualize 
or produce in terms of correlations and patterns. This evokes the philosophical principles of 
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epistemology and ontology (Kitchin, 2014), that is, what constitutes knowledge, and how is it 
organized and represented. Certainly, the very lure of Big-Data analytics is that it can allow for 
important discoveries not achievable with traditional data and technology, however, this also 
demands a high level of conceivability or creative thinking to discover the unexpected. 
Therefore, focusing on the technical aspects or mechanics of Big Data, such as size and 
technology is necessary but not sufficient if we are to realize the potential of Big Data. Big Data 
might be huge but its “power” does not eclipse the need “for vision or human insight.” (McAfee 
& Brynjolfsson, 2012, p. 7).  

A case in point is Google’s data-aggregating tool, Google Flu Trends (GFT), considered to 
be the first application of Big-Data analytics in the public health field (Zou, Zhu, Yang, & Shu, 
2015). It was designed to estimate influenza-like illness from online search activity, but the 
estimation algorithm consistently and significantly resulted in overestimation. Notably in 2012 
and 2013 the GFT predicted more than double the actual prevalence of flu reported by the 
Centers for Disease Control and Prevention (CDC) (Lazer, Kennedy, King, & Vespignani, 
2014). And this Big-Data failure was attributed by experts to the purely mechanical nature of 
the Google algorithm, which was free of theory (Harford, 2014) and not adapted (Butler, 2013) 
to reflect temporally relevant factors. A major unrecognized confounding factor was the 
widespread dramatic and fear-mongering news stories about the Flu, particularly in 2012, which 
resulted in an unduly high level of related search activity by those with and without flu 
symptoms (Harford, 2014). This clearly has implications for the way we think about and reason 
with Big Data. Big Data needs new thinking (Krumholz, 2014). 

 
3.3 REASONING WITH BIG DATA 

 
Undoubtedly, advanced computer technology including artificial intelligence is desirable in 

a world obsessed by bigger, faster, and now. But conceptualizing, explaining, and meaning-
making require particular cognitive expertise (Krumholz, 2014); this “requires man, not 
machine” (Jenkins, 2013, p. 4). This consideration and need is not new to statistics or for that 
matter any scientific discipline, but is of key importance to Big Data, given the high level of 
complexity and multidimensionality, and hence uncertainty about what it represents, and the 
intelligence that can be derived. Human reasoning is complex (Johnson-Laird, 2010), and falls 
within the purview of cognitive psychology. 

According to Jones (2016, p. 5) “cognitive models help us to know where to search and 
what to search for as the data magnitude grows.” Additionally, the high degree of uncertainty 
and dimensionality calls for emphasis on metacognition or reflective thinking to help to guard 
against decision-making pitfalls such as confirmatory bias and failure to recognize spurious 
correlations (Lane & Corrie, 2007). And lest we forget, when it comes to Big Data, the “curse 
of dimensionality” is ever present (Dinov, 2016, p. 9). Other well-established cognitive biases 
must also be considered (Tversky &, Kahneman, 1974). 

Kitchin (2014, p. 10) notes that “there is an urgent need for wider critical reflection on the 
epistemological implications of Big Data and data analytics” toward embracing inductive 
reasoning (Krumholz, 2014). The mainstream hypothetico-deductive approach (frequentist and 
Bayesian) to research and data analysis reflects a closed or circular system of logic (Gelman & 
Shalizi, 2013), and this defeats the purpose of Big-Data analytics, which is largely exploratory, 
that is, the goal is to generate novel and meaningful insights and hypotheses “born from the 
data” rather than from theory (Kelling et al., 2009, p. 613). Tukey (as cited in Jones, 1987, p. 
606) characterized exploratory data analysis as “flexible realistic data analysis that tries to let 
the data speak freely.” 
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4. INDUCTIVE REASONING 
 
There is some semantic ambiguity surrounding the term reasoning also commonly used 

interchangeably with inference. While statistical inference associated with hypothesis testing is 
inductive (Evans, 1993), it is not inductive reasoning. Rather, it is a rigid algorithmic procedure 
for determining a population estimate from a sample statistic, and requires no creative processes 
of the mind (or reasoning), in the true psychological sense. Bakker, Kent, Derry, Noss, and 
Hoyles (2008, p. 139) refer to hypothesis testing as “mostly a formalized form of inductive 
inference,” and according to Fisher (1935, p. 39) although it involves “uncertain inferences,” it 
does not mean that they are not “mathematically rigorous inferences.” Lehmann (2012, p. 
1069), reported that Neyman characterized the mere acceptance and rejection of a 
hypothesis as void of “cognitive significance.” Specifically, Neyman (1957, p. 13) observed, 
that this process does not “involve reasoning,” rather it is “an automatic adherence to a pre-
assigned rule,” a position also supported by Fisher (1935, p. 40) in noting that a probabilistic 
statement of uncertainty “is no guarantee of its adequacy for reasoning of a genuinely inductive 
kind.”  

Cognitive scientists have characterized inductive reasoning as the ability to be creative and 
generate novel ideas and discovery (De Koning, Sijtsma, & Hamers, 2003; Sternberg & 
Gardner, 1983; Klauer & Phye, 2008). According to Hayes and Heit (2018, p. 1): “Inductive 
reasoning entails using existing knowledge to make predictions about novel cases.” The call for 
greater emphasis on inductive reasoning in the context of Big-Data analytics represents an 
appeal for intellectual flexibility (Kyriacou, 2004), i.e., an open system of logic. The positivist 
perspective that knowledge is objective, and can only be derived from hypothetico-deductive 
reasoning models (Bonell, Moore, Warren, & Moore, 2018), is limiting and myopic. The very 
theories and models used for deductive reasoning were initially developed using qualitative 
research and inductive reasoning (Tonidandel, King, & Cortina, 2018). Indeed, both modes of 
reasoning are important, toward augmenting our understanding of health and behavioral 
phenomena through Big Data, and optimizing its value. 

There is an abundance of research indicating that humans are naturally predisposed to 
perform inductive reasoning over deductive reasoning (Nisbett, Krantz, Jepson, & Kunda, 1983; 
Kemp & Tenenbaum, 2009), especially when faced with challenging situations, problems, and 
uncertainty. They intuitively construct and explore hypotheses to arrive at a solution (Arthur, 
1994). This is supported by the popular category-based induction model (Hayes, Ruthven, & 
Newell, 2007; Hayes & Newell, 2009), which posits that amidst uncertainty, humans perform a 
global inspection of the information or task (Klauer & Phye, 2008), comparing (and contrasting) 
characteristics of objects and items, identifying similarities (and differences), and heuristically 
formulating, confirming or refuting generalizations (Klauer, 1996; Tversky, 1977). Core 
cognitive tasks associated with induction are “categorization, probability judgment, analogical 
reasoning, scientific inference, and decision making” (Hayes, Heit, Swendsen, 2010, p. 278), as 
well as “concept formation” (Nisbett, Krantz, Jepson, & Kunda, 1983, p. 339). 

Current experimental research findings challenge the notion that inductive and deductive 
reasoning follow different neural pathways, that is, a dual-process model (Johnson-Laird, 2010; 
Hayes, Heit, & Swendsen, 2010), by showing that a single process or dimension accounts for 
both types of reasoning (Hayes, Stephens, Ngo, & Dunn, 2018). This is consistent with a long-
standing theory indicating that inductive reasoning (or intuition, using heuristic models) and 
deductive reasoning (using analytical models) may occur on a cognitive continuum from purely 
intuitive to purely analytical, with varying degrees of both in between (Hammond, 1981; 2000). 
Theoretical support for inductive reasoning as a key dimension of effective learning and 
practice, particularly in the context of Big-Data analytics, includes constructivism (Malle, 2013; 
Fosnot, 2013), which characterizes learning as an iterative and meaning-making experience, and 
Gestalt theory (Rock & Palmer, 1990), which explains how humans are inclined to perceive and 
organize information. 
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5. THEORETICAL SUPPORT FOR INDUCTIVE REASONING WITH BIG DATA  
 
Theoretical and philosophical foundations of learning serve to explain and predict the 

learning process and outcomes and hence facilitate effective curricular design and pedagogy. In 
this regard, behaviorism, cognitivism, and constructivism are recognized as the major 
theoretical frameworks (Ertmer & Newby, 2013), the latter being the dominant approach in the 
disciplines of Science, Technology, Engineering and Mathematics (STEM) (Kelley & Knowles, 
2016), including statistics and data science. Another theory, which is becoming increasingly 
relevant to the teaching, learning, and practice of Big-Data analytics, is Gestalt (Weissmann, 
2010). 

 
5.1 CONSTRUCTIVISM 

 
The constructivist philosophy of learning focuses on what constitutes knowledge and how 

we come to know, and is premised on the assumption that “knowledge is constructed in the 
mind of the learner” (Bodner, 1986, p. 873). It emphasizes a flexible, student-centered, active 
learning process of integrating information, identifying patterns, and making connections, 
toward a meaning-making experience (Fosnot, 2013) that fosters transferrable knowledge and 
skills. In other words, constructivism is associated with deep and meaningful learning including 
conceptual understanding. Moreover, constructivist methods have been equated to inductive 
teaching and learning, with specific reference to “inquiry learning, problem-based learning, 
project-based learning, case-based teaching, discovery learning, and just-in-time teaching” 
(Prince & Felder, 2006, p. 123; Dennick, 2016). 

There are two major constructivist perspectives (Powell & Kalina, 2009); the cognitive, and 
the social or socio-cultural (Vygotsky, 1978). The socio-cultural model is a variant of cognitive 
constructivism, and is more mainstream in educational reform (Cobb, 1996). It posits that the 
extent of learning is influenced by the quality of the social interaction (collaboration, 
negotiation, and cooperation) within the learning context or community. According to social 
constructivism, understanding “is a function of the content, the context, the activity of the 
learner, and, perhaps most importantly, the goals of the learner” (Savery & Duffy, 1996, p. 
136). This is usually contrasted with behaviorism, viewed as a rigid, passive, instructor-
centered, stimulus-response system of learning, which is linked to rote or surface learning. The 
popularity and plausibility of constructivism is its cognitive underpinning. 

Indeed, constructivism is just as controversial as it is popular, with labels such as “a fad” 
(Sjøberg, 2010, p. 485), and “the cult of constructivism” (Beatty, 2009, p. 464) especially 
regarding educational reform. This view is generally attributed to variability in the 
understanding of constructivism, including mis-characterizations (Fosnot, 2013). One common 
misconception is simply “viewing a series of tasks and laboratory activities as being equivalent 
to scientific inquiry” and “hands-on instruction,” without attention to “minds-on” experiences 
(Kelley & Knowles, 2016, p. 5), that is, actively engaging students in critical thinking and 
reasoning rather than emphasizing procedural tasks.  

Yet a broader perspective of constructivism views it as a multi-theoretical framework, 
which embodies some aspects of behaviorism in addition to cognitivism. Gestalt psychology, 
which addresses principles of perception and pattern recognition, and is a forerunner of 
cognitive psychology (Tobias, 2010), is also implicated, as is the generative learning theory 
(Wittrock, 1992), which preceded constructivism, and posits that learners actively integrate new 
ideas into existing schemata or mental models to generate meaning and understanding. In this 
regard, “knowledge is being actively constructed by the individual and knowing is an adaptive 
process, which organizes the individual’s experiential world” (Karagiorgi & Symeou, 2005, p. 
18; Hendry, 1996).  

Accordingly, prior knowledge plays an important role in the constructivist learning context, 
for which there is strong empirical support, with prior knowledge accounting for about two 
thirds of the variance in learning (Tobias, 2010, p. 52; Sjøberg, 2010; Prince & Felder, 2006).  
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5.2 GESTALT THEORY 
 
Of particular relevance to Big-Data analytics, is Gestalt psychology, which general concept 

is subsumed under constructivism. The Gestalt principles posit that the visual system organizes 
information based on innate laws of grouping, that is, humans are inclined to perceive objects 
and images based on similarity, proximity, continuation, and closure (Rock & Palmer, 1990), 
with a general proclivity for symmetry and simplicity (Chater & Vitányi, 2003). This is of key 
importance as scientists navigate and try to make sense of massive amounts of data. While these 
laws or principles generally result in accurate representations, spurious ones can also occur 
(Rock & Palmer, 1990). Gestalt, a German word, connotes shape, form, or configuration; Max 
Wertheimer, the pioneer of Gestalt psychology, stated the following on Gestalt, which is 
generally understood as “the whole is more than the sum of the parts” (Nesbitt & Friedrich, 
2002, p. 738), as well as, the meaning of the part is determined by our perception of the whole 
(Wertheimer, 1924, as cited in Weissmann, 2010, p. 2137): 

 
The fundamental of the Gestalt “formula” might be expressed in this way: There are wholes, the 
behavior of which is not determined by that of their individual elements, but where the parts are 
themselves determined by the innate nature of the whole. 
 
A main criticism of Gestalt psychology is that human perception is more than just grouping 

and segmenting; it also involves meaning and interpretation (Pinna, 2010; Boudewijnse, 2004), 
the foundation of constructivism, as noted by Vygotsky (1978, p. 33). 

 
A special feature of human perception – which arises at a very young age – is the perception of real 
objects. This is something for which there is no analogy in animal perception. By this term I mean 
that I do not see the world simply in color and shape but also as a world with sense and meaning. I do 
not merely see something round and black with two hands; I see a clock and I can distinguish one 
hand from the other.  
 
Indeed, pattern recognition and visualization maps have become synonymous with Big-Data 

analytics, and rightly so if we are to derive its benefits. Green (1998, p. 1) argues that:  
 
Humans are poor at gaining insight from data presented in numerical form. As a result, visualization 
research takes on great significance, offering a promising technology for transforming an indigestible 
mass of numbers into a medium which humans can understand, interpret and explore.  
 
Gestalt principles provide a framework for the effective design, organization, and 

presentation of information, as there seems to be a natural human preference for visual 
representations (Olshannikova, Ometov, Koucheryavy, & Olsson, 2015); a picture speaks a 
thousand words. But development in this area is lacking when it comes to realizing the potential 
of Big-Data analytics, and according to Guberman (2015, p. 25): 

 
The main cause of stagnation in this field has been the neglecting of knowledge accumulated in 
Psychology of Perception in general and in Gestalt Psychology in particular. Too much emphasis has 
been put on mathematics and engineering and too little on laws of human perception, which must be 
imitated.  
 
According to Gestalt theory, we have an innate tendency to “constellate” elements that seem 

similar (Weissmann, 2010, p. 2139), and, being mindful of these automatic perceptions, can 
reduce the likelihood of bias in interpretation, and spurious representations. 
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5.3 INTUITION, PRIOR KNOWLEDGE, AND INDUCTIVE REASONING 
 
Inductive reasoning is driven by intuition, which is informed by prior knowledge and is 

necessary for creativity and discovery (Tenenbaum, Griffiths, & Kemp, 2006). The critics 
however, contend that it is a blind and unscientific process, claiming the absence of theory and 
hypothesis (Kyriacou, 2004). Nevertheless, scientists come to the data with various conceptual 
models or schemas, and not as a tabula rasa or blank slate. Kitchin (2014, p. 5) states that “an 
inductive strategy of identifying patterns within data does not occur in a scientific vacuum and 
is discursively framed by previous findings” while according to Kemp and Tenenbaum (2009, 
p. 50) “induction draws on systems of rich conceptual knowledge.” 

Such prior mental models, schemata or knowledge repertoire are particularly relevant to 
Big-Data analytics where the ideas and hypotheses for exploration are vast and the analyst just 
cannot explore everything, hence, the need for a plausible basis for conceptualizing (Wise & 
Shaffer, 2015) at all stages of the statistical process. Unless data scientists possess at least a 
macro understanding of the domain of application, for example, surveillance for infectious 
diseases, genomics, medical imaging, etc., they could be considerably disadvantaged in terms of 
performing efficient and meaningful data analysis, and optimizing the potential of Big Data.  

It has been said that “visualization tools work best when scientists have an idea of what to 
visualize in a pile of data” (Harvard, 2012). Indeed, this encapsulates inductive reasoning, the 
primary cognitive process for generalizing, and formulating scientific hypotheses, which are 
core elements of exploratory data analysis and discovery (Feeney & Heit, 2007), the key goals 
of Big-Data analytics including machine learning. This is reinforced by Tenenbaum & Kemp 
(2007, p. 1) and Mitchell (1997): 

 
Formal analyses in machine learning show that meaningful generalization is not possible unless a 
learner begins with some sort of inductive bias: some set of constraints on the space of hypotheses 
that will be considered. 
 
Accordingly, equipping students and practitioners with conceptual frameworks (Imenda, 

2014) – taxonomic and causal (Tenenbaum, Griffiths, & Kemp, 2006) – for organizing and 
evaluating data in the healthcare context can help to transform Big Data into “smart data” by 
generating novel ideas and discovery. 

The risk of not using conceptual frameworks to guide exploratory analysis of Big Data is 
evident in scientific reports of false positive genomic associations (Kyriacou, 2004), and gross 
overestimates of flu cases using the Google Flu Trends tool (Harford, 2014). Hence, in a world 
of Big Data, where the stakes and potential benefits are high, the preparation and readiness of 
data scientists should not be left to assumptions and chance. Inductive reasoning applies to all 
phases of data analysis. Therefore, training programs for statisticians and data scientists should 
give greater importance to the development and application of inductive reasoning toward 
fostering a mindset for optimizing the value of Big Data. Of critical importance in this regard is 
the following (Kemp & Tenenbaum, 2009, p. 20):  

 
A psychological account of induction should answer at least two questions – what is the nature of the 
background knowledge that supports induction, and how is that knowledge combined with evidence 
to yield a conclusion? 
 
With regard to the nature of the prior or background knowledge that supports inductive 

reasoning, and how that knowledge interacts with the evidence to produce an outcome or 
decision, Tenenbaum, Griffiths, & Kemp (2006) found empirical support for using either 
taxonomic (classification) or causal reasoning models, based on the properties of the inductive 
context (Kemp & Tenenbaum, 2009). 
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6. EPIDEMIOLOGICAL CONCEPTS AS BASIS FOR INDUCTIVE REASONING  
WITH BIG DATA  

 
Given the uncertainty associated with Big Data, which is usually observational or non-

experimental (Christensen & Davis, 2018), classification and causal reasoning models are 
particularly necessary for deriving understanding and meaning (Johnson, Rajeev-Kumar, & 
Keil, 2016). Toward this end, epidemiology, which is considered the twin discipline of statistics 
(Bhopal, 2016) offers concepts and frameworks that can serve as a firm basis for reasoning with 
Big Data in healthcare. A common definition of epidemiology is “the study of the distribution 
and determinants of health-related states or events in specified populations and the application 
of this study to the prevention and control of health problems” (Last, 2001). In other words, it is 
concerned with patterns of distribution, determinants, and risk of diseases and other health-
related states in the population (Bhopal, 2016), and is the core underpinning of evidence-based 
medicine (EBM). 

Moreover, epidemiology is multidisciplinary in nature: it includes unifying and organizing 
frameworks for conceptualizing, modeling, and explaining variability, as well as facilitating 
causal analysis and understanding (Ahrens, Krickeberg, & Pigeot, 2005) and generating 
plausible hypotheses (Stroup, Goodman, Cordell, & Scheaffer, 2004). Such models operate as 
intuitive theories, which Tenenbaum, Griffiths, & Kemp (2006, p. 309) define as:  

 
An intuitive theory may be thought of as a system of related concepts, together with a set of causal 
laws, structural constraints, or other explanatory principles, that guide inductive inference in a 
particular domain.  
 
While it has long been recognized that the study of epidemiology is fundamental to effective 

statistical practice (Abramson, 2000), particularly biostatistics, epidemiology is not generally a 
part of the required curriculum for the training of statisticians and data scientists (DeMets, 
Stormo, Boehnke, Louis, Taylor, & Dixon, 2006). Rather, epidemiology is usually listed as an 
optional course or incorporated into other elective courses. There have been repeated calls for 
an integrated curriculum that “merges biostatistics with clinically relevant medical discussions, 
such as those that occur in many EBM curricula for epidemiological principles” (West & 
Ficalora, 2007, p. 939; Gouda & Powles, 2014) as “one way to enrich the applied learning of 
statistics” (Bennett, 2016, p. 4). Moreover, this approach is associated with higher levels of 
statistical competence (Stevenson, 2016), greater satisfaction, and more positive attitudes 
toward statistics and research (West & Ficalora, 2007, p. 939; Al-Zahrani, & Al-Khail, 2015; 
Lawrence, 2016).  

Despite the noted benefits of an integrated (epidemiology and biostatistics) curriculum, the 
long-standing challenge of adequately preparing instructors and practitioners and developing 
curricular materials remains an open task (Simpson, 1995; Del Mar, Glasziou, & Mayer, 2004; 
Bellan, Pulliam, Scott, Dushoff, & the MMED Organizing Committee, 2012). Two 
epidemiological concepts or frameworks of core relevance in this regard, especially in the 
context of Big Data, where exploratory data analysis is predominant, are as follows.  

 
• The epidemiological triad: A taxonomic concept that provides a basis for gaining 

insight into and modeling health issues, specifically allowing for the orientation and 
classification of variables. This model allows for investigating the interaction of the 
agent (risk factor or cause), the host (person at risk), and the environment (the context). 

• The Bradford-Hill criteria: A set of factors for evaluating research outcomes, 
particularly non-experimental data, to determine if causality can be inferred from 
observed associations. 
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These two concepts are typical of an introductory epidemiology course; they provide a basis 
for inductive reasoning including classifying and organizing variables, and identifying causal 
relationships. 

 
6.1 THE EPIDEMIOLOGICAL TRIAD  

 
The epidemiological triad (see Figure 1) is a concept that can facilitate statistical thinking 

and reasoning in the clinical and public health contexts, including infectious and non-infectious 
diseases (Galea, Riddle, & Kaplan, 2009); this triad is particularly relevant to Big-Data 
analytics, which is largely exploratory in nature.  

 

 
 

Figure 1. The Epidemiological Triad 
 
This triangular representation depicts the three major factors that interact to cause or 

influence disease or other health outcomes (Bhopal, 2016). It is an empirical framework that 
provides a basis for conceptualizing and organizing health-related data, and generating plausible 
hypotheses, interpretations and explanations (Lipton & Ødegaard, 2005).  

 
Agent  The agent refers to the causal or risk factor(s) for the disease or outcome, recognizing 
that this could be a single factor, as in the medical and biological sciences where one organism 
(such as a virus) is the causal agent of an infectious disease. Multifactorial causation (or 
association) – generally referred to as a “web of causation” (Detels, Beaglehole, Lansang, & 
Gulliford, 2011) – is more applicable to the behavioral sciences, where it reflects the complexity 
of the underlying causal or explanatory mechanism. A common etiological model is the 
biopsychosocial concept of disease and wellness, which implicates biological, psychological, 
and sociological factors in multifactorial causality (Engel, 1980; Porta, 2014). In essence, the 
agent is what explains or brings about the outcome.  
 
Host  The host is generally the person who is at risk of developing or harboring the disease.  
 
Environment  The environment refers to the context where the agent can interact with the host 
to bring about the disease or other outcome. It encompasses the surroundings, conditions, and 
other influences external to the host.  
 

Moreover, this triad reinforces the principle of “necessary but not sufficient” (Porta, 2014) 
in terms of modeling data to explain and predict outcomes, and for causal reasoning. That is, 
while each factor is required for development of the disease or outcome, it is the combination 
and interaction of these factors that determine if and the extent to which the outcome occurs. 
The epidemiological triad can be further detailed and expanded by noting that each of the three 
factors (agent, host, and environment) is itself influenced by other factors, which can alter or 
modify the level of susceptibility or risk of disease occurrence, as well as determine approaches 

Environment 

Host 

Agent 
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to prevention and control. The interrelationships among these factors can be understood as 
follows. 

For example, age, immunization status, genetic predisposition, and nutritional status can 
affect the susceptibility or risk of the host or person. Sanitary conditions, availability of public 
health services such as vector control (e.g., mosquitoes), and housing quality (such as crowding) 
can influence risk posed by the environment. And the virulence of a pathogenic or disease 
causing organism (the agent) or the potency of a drug (the agent) in the case of substance use 
disorders, will impact the degree or severity of the disease or outcome.  

The epidemiological triad therefore provides a basis for modeling disease and other health 
outcomes, specifically allowing for the orientation and classification of variables as follows 
(Bhopal, 2016; Porta, 2014). 

1. An exposure, cause, or risk factor, which is also known as the independent, predictor, or 
explanatory variable. 

2. An outcome, response, or criterion variable, which is generally referred to as the 
dependent variable. 

3. A mediator (intervening or intermediate) variable, which accounts for or explains the 
relationship between the exposure or risk factor and the outcome. 

4. A moderator or effect modifier also known as an interaction variable, which can alter 
the effect of the risk factor (the independent variable). 

5. A confounding factor, which is a variable that is associated with both the exposure 
(independent variable) and the outcome (dependent variable) resulting in biased or 
spurious associations. 

 
Any inference resulting from statistical modeling, particularly exploratory data analysis and 

data from non-experimental research designs, requires strict evaluation to determine whether the 
relationships observed can imply causality or are just associative. The Bradford-Hill criteria 
(Hill, 1965; Fedak, Bernal, Capshaw, & Gross, 2015), establish a model of causal reasoning, 
which may be relevant in this regard. 

 
6.2 THE BRADFORD-HILL CRITERIA  

 
In the context of evidence-based practice, healthcare research emphasizes experimental 

methods (Greenhalgh, Howick, & Maskrey, 2014) that are hypothetico-deductive in nature. In 
other words, the researcher begins with a theoretical framework, based on the problem and 
context under investigation, and the analysis and interpretation of the data are informed or 
guided by the underlying theory. This approach however, does not capture the reality of Big-
Data analytics, which is mostly focused on observational data and exploratory data analysis to 
generate insights and hypotheses largely through inductive reasoning. Therefore, in the Big-
Data context, the quality and utility of the evidence, often referred to as veracity and evaluated 
in terms of reliability and validity, attract greater scrutiny, especially given the myriad of 
potential confounding factors (Brookhart, Stürmer, Glynn, Rassen, & Schneeweiss, 2010).  

The “gold standard” of medical research is the randomized controlled trial or RCT (a true 
experimental study), which can determine whether an outcome can be attributed to the 
manipulated variable or intervention (Vogt, Gardner, & Haeffele, 2012). However, given that 
Big Data is predominantly observational, statistically significant associations must be carefully 
evaluated to determine whether causality can be implied. Statistical significance by itself must 
not be misconstrued as evidence of importance or causality. 

Hill (1965) proposed a set of factors for consideration when evaluating statistically 
significant relationships or associations to determine whether causality can be inferred. These 
considerations are now commonly referred to as the Bradford-Hill criteria (Rothman & 
Greenland, 2005), a standard that is widely recognized in the field of epidemiology. The nine 
criteria are discussed below. They should be used as guidelines for assessing the quality of 
evidence and not as absolute and exhaustive criteria for determining causality. 
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1. Strength: This is generally determined by the magnitude of the relationship or 
association using statistical measures. While there is the tendency to regard strong 
relationships as being potentially causal, the role of confounding must always be 
considered. As well, a weak relationship should also be carefully assessed as it could be 
implicated in multifactorial causality rather than a one-to-one or single-cause 
relationship.  

2. Consistency: This refers to the reliability, replicability, reproducibility, or robustness of 
the findings. That is, was the finding repeatedly observed by different researchers, in 
different settings, using different methods?  

3. Specificity: This was meant to apply to direct one-to-one relationships. That is, if a 
single specific exposure is linked to a particular disease or outcome, it is strong evidence 
of a causal effect. However, this is a narrow view of causation, as a particular factor or 
exposure can be causally implicated in multiple diseases or outcomes, hence a lack of 
specificity, but still causal. As well, a set of factors can bring about a particular disease 
or outcome, as in multifactorial causality.  

4. Temporality: This is the “chicken and the egg” conundrum and refers to the sequence of 
the factors in the relationship. Which comes first? In order to establish causality, the 
hypothetical cause (or exposure) must precede or come before the disease or outcome 
(the hypothetical effect). Good logic dictates that this is an “inarguable” necessary 
criterion for causation (Rothman & Greenland, 2005, p. 148). 

5. Biological gradient: This refers to a dose-response relationship. Simply put, if an 
exposure causes a disease or outcome, then an increase in the exposure (a higher dose) 
should increase the risk of occurrence of the disease or outcome, suggesting a linear or 
at least monotonic relationship. However, causality is often complex and nonlinear, and 
hence while the concept of biological gradient may be informative for data exploration, 
it might not be helpful or relevant to assessing causation. Also, assessment for 
confounding is critical in this context. 

6. Biological plausibility: This means that the observed association is consistent with the 
established body of scientific knowledge and understanding. In other words, the 
association makes scientific sense as it has a rational and theoretical basis. Indeed, 
caution is required here, as assessment for plausibility is limited to the existing body of 
knowledge, and as Hill (1965, p. 10) reminds us, “the association we observe may be 
one new to science or medicine and we must not dismiss it too light-heartedly as just too 
odd.” In other words, we must be open to discovering the unexpected. Also, plausibility 
is not always purely biological in the medical and health context. For example, the 
literature also refers to psychological and sociological plausibility. 

7. Coherence: Hill (1965, p. 10) characterized this criterion by noting that “the cause-and-
effect interpretation of our data should not seriously conflict with the generally known 
facts of the natural history and biology of the disease.” The “natural history of disease 
refers to the progression of a disease process in an individual over time, in the absence 
of treatment” (CDC, 2006, p. 59), whereas biology relates to pathogenesis or the 
underlying disease mechanism. While this pertains to the clinical setting, the concept of 
coherence can be extended to other fields of research and contexts. Coherence is how 
consistent the observed association is with the wider body of direct and indirect 
scientific evidence, and is therefore akin to plausibility, albeit broader. In assessing the 
evidence, researchers should be mindful of potential misinterpretation and 
misunderstanding, as well as the limitations of the extant body of knowledge, and 
therefore, not readily “nullify” observed associations that cannot be substantiated.  

8. Experiment: Experimental research provides the strongest evidence in support of causal 
inference, depending on the quality and complexity of the methodology. This design 
allows for examining the effectiveness of treatments or interventions, which are 
manipulated to test a predetermined hypothesis. While a core requirement of the 
experimental design, particularly a true experiment, such as a randomized controlled 



 251 

trial, is control for confounding factors, bias must always be considered, and alternative 
explanations for the outcomes explored.  

9. Analogy: This results when information from external sources is used to explain or 
clarify the observed association because of similarity in properties (Bartha, 2013). This 
criterion is directly related to plausibility and coherence, and is the basis of inductive 
reasoning (Landes, Osimani, & Poellinger, 2018), a cognitive process that is necessary 
for effective Big-Data analytics (McAbee, Landis, & Burke, 2017). The “absence of 
such analogies only reflects lack of imagination or experience, not falsity of the 
hypothesis” (Rothman & Greenland, 2005, p. 149). 

 
 

7. SUMMARY AND IMPLICATIONS 
 
The premise of this paper is that training programs for statisticians and data scientists in 

healthcare should give greater importance to fostering inductive reasoning toward developing a 
mindset for optimizing Big Data, and supporting evidence-based practice. Indeed, this is at 
variance with the current predominant focus on the hypothetico-deductive reasoning model 
which emphasizes algorithmic and mathematical procedures. In addition to augmenting our 
understanding of Big Data, incorporating strategies for inductive reasoning into the instructional 
repertoire can help to meet the diverse cognitive preferences of learners. As well, the ubiquitous 
perception of statistics as mathematics, and the associated high levels of anxiety and fear among 
some students and prospective candidates can be a major barrier to pursuing a career as a 
statistician or data scientist. Therefore, outreach communication should address the important 
role of inductive reasoning or creative thinking in Big-Data analytics, as this can generate 
greater interest in the discipline from diverse groups, and help to mitigate the dearth of qualified 
personnel. 

A key assumption underlying this paper is that inductive and deductive reasoning are not 
orthogonal or mutually exclusive processes or constructs but occur on a cognitive continuum. 
Inductive reasoning is a more open system of logic; the ability to be creative, and generate 
novel and meaningful insights and hypotheses from the data rather than from theory. Of note is 
that while statistical inference associated with hypothesis testing is inductive; it is not inductive 
reasoning; rather statistical inference follows a pre-assigned rule. 

The constructivist philosophy of learning and Gestalt theory constitute a theoretical 
framework that supports inductive reasoning as a necessary cognitive tool for effective learning 
and practice of Big-Data analytics. Pedagogical strategies such as problem-based learning 
(PBL) and cooperative learning can be effective in this regard. Constructivism posits that 
knowledge is constructed in the mind of the learner, and learning is a meaning-making 
experience. Whereas, the Gestalt principles explain how humans are inclined to perceive objects 
and images. Gestalt psychology reminds us that we have an innate tendency to “constellate” 
elements that seem similar, and being mindful of these automatic perceptions, can reduce the 
likelihood of bias. Moreover, there seems to be a natural human preference for visual 
representations. 

Big-Data analytics is primarily exploratory in nature, aimed at discovery and innovation or 
producing the unexpected and this requires fluid reasoning akin to inductive reasoning, which 
draws on systems of rich conceptual knowledge. Prior knowledge base, which can serve as a 
meaningful foundation for inductive reasoning includes taxonomic (classification) and causal 
reasoning models. These conceptual models function as intuitive theories but are not typically 
addressed in the core statistics curriculum. However, given the uncertainty inherent in Big Data, 
not to mention its largely observational or non-experimental nature, such conceptual models, 
which can be adopted from the discipline of epidemiology, can be particularly useful for 
deriving understanding and meaning. This calls for a more integrated curricular approach. 
Toward this end, this paper proposes that two core epidemiological frameworks, the 
epidemiological triad (a taxonomic concept) and the Bradford-Hill criteria (a causal reasoning 
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model) have the potential to facilitate inductive reasoning toward more efficient and effective 
Big-Data analytics in healthcare.  

While the charm of Big Data is centered on its size, its promise is based on assumptions 
about the intelligence that is nested in its complex and high-dimensional structure. The major 
challenge for Big-Data analytics practitioners is to separate the signal or useful information 
from the noise or confounding, and transforming Big Data into smart data. And as fascinating as 
artificial intelligence and machine learning are, this is just technology, and what can be 
produced is dependent on human capacity for creative thinking and conceivability.  

Finally, empirical research is required to ascertain instructors’ and practitioners’ perceptions 
about the role of inductive reasoning in Big-Data analytics, as well as what constitutes effective 
pedagogy. The epidemiological triad and the Bradford-Hill criteria should be further explored, 
in this regard, to determine how the knowledge from each model or concept interacts with the 
evidence from Big Data to produce outcomes. Together, these can support the development of 
guidelines for an effective integrated curriculum for the training of statisticians and data 
scientists who understand how to maximize the value of Big Data. 
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