Tensions when teaching the investigative cycle in pre-service teacher education

Authors

  • Valentina Giaconi Universidad de O
  • Francisca M. Ubilla Universidad de O
  • Helena Montenegro Centro de Modelamiento Matemático, Universidad de Chile

DOI:

https://doi.org/10.52041/iase2023.307

Abstract

We report a self-study of two mathematics teacher educators and one critical friend that studied the tensions emerging when teaching pre-service teachers the Investigative Cycle (IC) as a statistical- related process and a teaching statistics and probability framework. The focus on teacher educators is fundamental to adequately address the statistics education challenges that appear during pre-service teacher education. In this case, the more salient tensions were related to the pre-service teachers' perceptions, that considered a lack of articulation between the IC and the curriculum (Theoretical- curricular tension), were not able to concretely connect the curriculum and a concrete statistical project (Curricular-practical tension) and perceived that the IC was not applicable to real school classrooms (Theoretical-practical tension). These results suggest some solutions to improve the use of the IC in teaching statistics and probability in the school.

References

Arnold, P., & Franklin, C. (2021). What makes a good statistical question? Journal of Statistics and Data Science Education, 29(1), 122-130.

Bargagliotti, A., Arnold, P., & Franklin, C. (2021). GAISE II: Bringing data into classrooms. Mathematics Teacher: Learning and Teaching PK-12, 114(6), 424-435.

Berry, A. (2007). Tensions in teaching about teaching: Understanding practice as a teacher educator (Vol. 5). Springer Science & Business Media.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in psychology, 3(2), 77-101.

Burrill, G., & Biehler, R. (2011). Fundamental statistical ideas in the school curriculum and in training teachers. Teaching statistics in school mathematics-challenges for teaching and teacher education: A Joint ICMI/IASE study: The 18th ICMI study, 57-69.

Giaconi, V., Montenegro, H., Rojas, F., Catalán, M., & Guíñez, F. (2022). Tensiones al enseñar inferencia estadística en la formación inicial docente. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 40(3), 71-86.

Heaton, R. M., & Mickelson, W. T. (2002). The learning and teaching of statistical investigation in teaching and teacher education. Journal of Mathematics Teacher Education, 5, 35-59.

Jaggia, S., Kelly, A., Lertwachara, K., & Chen, L. (2020). Applying the CRISP‐DM framework for teaching business analytics. Decision Sciences Journal of Innovative Education, 18(4), 612-634.

LaBoskey V.K. (2004) The Methodology of Self-Study and Its Theoretical Underpinnings. In: Loughran J.J., Hamilton M.L., LaBoskey V.K., Russell T. (eds) International Handbook of Self-Study of Teaching and Teacher Education Practices. Springer International Handbooks of Education, vol

Ministerio de Educación. (2015). Bases curriculares. 7o básico a 2o medio. MINEDUC.

Ministerio de Educación. (2019). Bases Curriculares 3o y 4o medio. MINEDUC.

Pithouse-Morgan, K. (2022). Self-study in Teaching and Teacher Education: Characteristics and contributions. Teaching and Teacher Education, 119, 103880. https://doi.org/10.1016/j.tate.2022.103880

Schiller, A., & Engel, J. (2016). Civic statistics and the preparation of future secondary school mathematics teachers. Promoting understanding of statistics about society: Proceedings of the Roundtable Conference of the International Association of Statistics Education, Berlin, Germany.

Schuck, S. y Brandenburg, R. (2020). Self-Study in Mathematics teacher education. En J. Kitchen, A. Berry, S. Bullock, A. Crowe, M. Taylor, H. Guðjónsdóttir y L. Thomas (Eds.), International Handbook of Self-Study of Teaching and Teacher Education Practices (pp. 869-897). Springer Singapore. https://doi.org/10.1007/978-981-13-6880-6_29

Suazo-Flores, E., Kastberg, S. E., Grant, M., & Chapman, O. (2023) Commentary on thematic special issue: seeing self-based methodology through a philosophical lens. Philosophy of Mathematics Education Journal. (40). https://education.exeter.ac.uk/research/centres/stem/publications/pmej/pome40/index.html

Tintle, N., Chance, B. L., Cobb, G. W., Rossman, A. J., Roy, S., Swanson, T., & VanderStoep, J. (2020). Introduction to statistical investigations. John Wiley & Sons.

Ubilla, F. M. (2021). ¿Qué rol juegan los datos en el ciclo de investigación estadística? Uno: Revista de didáctica de las matematicas.

Ubilla, F. M., & Gorgorió, N. (2022). Sobre cómo transitan los futuros maestros por el ciclo de investigación estadística: Orientaciones para la implementación de proyectos estadísticos. Bolema: Boletim de Educação Matemática, 35, 1751-1775.

Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International statistical review, 67(3), 223-248.

Downloads

Published

2024-03-29

Conference Proceedings Volume

Section

Topic 3: Enhancing Statistics and Data Science in Schools