Training Mexican high school teachers to enhance data science teaching

Authors

  • Rosa Daniela Chávez Aguilar Instituto Politécnico Nacional
  • Ana Luisa Gómez Blancarte Instituto Politécnico Nacional

DOI:

https://doi.org/10.52041/iase2023.305

Abstract

This paper aims to describe advances in a proposal for preparing Mexican high school teachers to teach data science according to the six phases of the Data Investigation Process cycle: frame the problem; consider and gather the data; process the data; explore and visualize the data; consider the models; and communicate and propose actions. We report an online course guided by the Data Investigation Process cycle to provide Mexican high school in-service teachers with knowledge about techniques used in data science. We identify how in-service teachers become aware of the phases when asked to investigate a real problem through a project. Teachers found difficulties in formulating an investigative question and faced the problem of finding databases of real problems. The retrospective analysis allows us to evaluate some improvements that can be made to the course so that teachers can develop the skills that data science teaching demands.

References

Arnold, P., & Franklin, C. (2021). What makes a good statistical question? Journal of Statistics and Data Science Education, 29(1), 122-130.

Asamoah, D., Doran, D., & Schiller, S. (2018). Interdisciplinarity in data science pedagogy: A foundation design. Journal of Computer Information Systems, 60(4), 370-377.

Bargagliotti, A., Franklin, C., Arnold, P., Gould, R., Johnson, S., Perez, L., & Spangler, D. (2020). PreK-12 guidelines for assessment and instruction in statistics education II (GAISE II). A framework for statistics and data science education. American Statistical Association- National Council of Teachers of Mathematics. https://www.amstat.org/asa/files/pdfs/GAISE/GAISEIIPreK12_Full.pdf

Blei, D. M., & Smyth, P. (2017). Science and data science. PNAS, 114(33), 8689–8692.

Brooks, C., Quintana, R. M., Choi, H., Quintana, C., NeCamp, T., & Gardner, J. (2021). Towards Culturally Relevant Personalization at Scale: Experiments with Data Science Learners. International Journal of Artificial Intelligence in Education, 31(4), 516-537.

Boz, T., & Allexsaht-Snider, M. (2022). How do elementary school teachers learn coding and robotics? A case study of mediations and conflicts. Education and Information Technologies, 27, 3935-3963.

Carmichael, I., & Marron, J. S. (2018). Data science vs. statistics: two Cultures? Japanese Journal of Statistics and Data Science, 1(1), 117-138.

Fukuda, H. (2021). What makes data science education unique?: A literature review. In R. Helenius & E. Falck (Eds.), Statistics Education in the Era of Data Science. Proceedings of the Satellite conference of the International Association for Statistical Education (IASE). Online conference.

Gómez-Blancarte, A. (2022). An overview of the use of technology for teaching statistics by mexican high school teachers. In S. A. Peters, L. Zapata-Cardona, F. Bonafini, & A. Fan (Eds.), Bridging the Gap: Empowering & Educating Today’s Learners in Statistics. Proceedings of the 11th International Conference on Teaching Statistics (ICOTS11, September 2022), Rosario, Argentina. ISI/IASE.

Hardin, J., Hoerl, R., Horton, N. J., Nolan, D., Baumer, B., Hall-Holt, O., Murrell, P., Peng, R., Roback, P., Lang, D. T., & Ward, M. D. (2015). Data science in statistics curricula: preparing students to “think with data”. The American Statistician, 69(4), 343–353.

Hicks, S. C., & Irizarry, R. A. (2018. A guide to teaching data science. The American Statistician, 72(4), 382-391.

Instituto Politécnico Nacional (2023). Licenciatura en Ciencia de Datos [Bachelor’s Degree in Data Science]. Instituto Politécnico Nacional. https://www.ipn.mx/oferta-educativa/educacion- superior/ver-carrera.html?lg=es&id=69&nombre=Licenciatura-en-Ciencia-de-Datos

Lee, V., Wilkerson, M.H., & Lanouette, K. (2021). A call for a humanistic stance toward K-12 data science education. Educational Researcher, 50 (9), 664-672.

Lee, H. Y., Mojica, G. F., Thrasher, E. P., & Baumgartner, P. (2022). Investigating data like a data scientist: Key practices and processes. Statistics Education Research Journal, 21(2), 1-23.

Sanusi, I. T., Oyelere, S. S., Vartiainen, H., Suhonen, J., & Tuklalnen, M. (2022). A systematic review of teaching and learning machine learning in K‑12 education. Education and Information Technologies. https://doi.org/10.1007/s10639-022-11416-7

Scott, E., Wenderot, M., Doherty, J., & Tanner, K. (2020). Design-Based Research: A Methodology to Extend and Enrich Biology Education Research. CBE—Life Sciences Education, 19(11), 1-12.

Secretaria de Educación Pública. (2019). Programa de estudios de la carrera técnica de Ciencia de Datos e Información [Syllabus of the Data and Information Science technical degree program]. Subsecretaría de Educación Media Superior. http://cbtis222.edu.mx/res/pdf/CienciaDeDatosEInformacion.pdf

Secretaria de Educación Pública. (2023). Progresiones de aprendizaje del recurso sociocognitivo Cultura Digital. [Learning progressions of the socio-cognitive resource Digital Culture]. Secretaria de Educación Pública. http://desarrolloprofesionaldocente.sems.gob.mx/convocatoria1_2023/docs/Progresiones%20de% 20aprendizaje%20-%20Cultura%20digital.pdf

Schwab-McCkoy A., Baker, C. M., & Gasper, R. E. (2021). Data Science in 2020: Computing, curricula, and challenges for the next 10 years. Journal of Statistics and Data Science Education, 29(1), S40- S50.

Vance, E., Alzen, J., & Smith, H. (2022). Creating shared understanding in statistics and data science collaborations. Journal of Statistics and Data Science Education, 30(1), 54-64.

Universidad Nacional Autónoma de México. (2023). Ciencia de Datos. [Data Science]. Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas. http://oferta.unam.mx/planestudios/Ciencia-de-Datos-IIMAS_Plan%20de%20estudios19.pdf

Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67(3), 223–248.

Downloads

Published

2024-03-29

Conference Proceedings Volume

Section

Topic 3: Enhancing Statistics and Data Science in Schools