Describing the didactic-stochastic knowledge of pre-service mathematics teacher: The case of Chile

Authors

  • Felipe Ruz Pontificia Universidad Católica de Valparaíso
  • Francisca M. Ubilla Universidad de O’Higgins
  • Valentina Giaconi Universidad de O’Higgins

DOI:

https://doi.org/10.52041/iase2023.105

Abstract

Stochastic education of teachers has become an important research topic as mathematics teachers are usually responsible for statistics and probability teaching in schools. However, the emergence of new theoretical approaches has highlighted the problem of organizing and describing the professional knowledge needed to teach stochastics. The aim of this paper is to characterize the didactic-stochastic knowledge needed for pre-service mathematics teachers, considering Chile as a case study. Following a qualitative approach through a content analysis of the Chilean Standards for Pre-service Teacher Education, we obtained, as a result, a set of 37 indicators organized according to the Didactic- Mathematical Knowledge Model, and validated by the judgment of eight experts. The indicators consider disciplinary aspects (stochastics content); students’ knowledge and their learning (cognitive content) and teacher interests (affective content); and the instructional processes (interactional and mediational content) and their link with other areas of knowledge (ecological content). We hope that the identified indicators become a useful tool to organize and evaluate stochastic education programs for teachers.

References

Aiken, L. R. (1980). Content validity and reliability of single items or questionnaires. Educational and Psychological Measurement, 40, 955-959.

Aiken, L. R. (1985). Three coefficients for analyzing the reliability and validity of ratings. Educational and Psychological Measurement, 45, 131-142.

Ball, D., Thames, M., & Phelps, G. (2008). Content knowledge for teaching. Journal of Teacher Education, 59(5), 389-407.

Burgess, T. (2012). How does teacher knowledge in statistics impact on teacher listening? In J. Dindyal, L. P. Cheng & S. Fong (Eds.), Mathematics education: Expanding horizons. Proceedings of the 35th conference of the Mathematics Education Research Group of Australasia (pp. 146-153). MERGA.

Callingham, R., Carmichael, C., & Watson, J. M. (2016). Explaining student achievement: The influence of teachers’ pedagogical content knowledge in statistics. International Journal of Science and Mathematics Education, 14, 1339-1357.

Callingham, R. & Watson, J. M. (2011). Measuring levels of statistical pedagogical content knowledge. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics: Challenges for teaching and teacher education. A joint ICMI/IASE study (pp. 283-293). Springer.

Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education (6th edition). Routledge.

Flores, M. A. (2016). Teacher education curriculum. In J. Loughran, M. L. Hamilton (Eds.) International Handbook of Teacher Education: Volume 1, 187-230.

Franklin, C., Bargagliotti, A., Case, C., Kader, G., Scheaffer, R. y Spangler, D. (2015). Statistical Education of Teachers (SET). American Statistical Association (ASA).

Godino, J. D., Giacomone, B., Batanero, C., & Font, V. (2017). Enfoque Ontosemiótico de los Conocimientos y Competencias del Profesor de Matemáticas. Boletim de Educação Matemática, 31(57), 90-113

Godino, J. D. (2009). Categorías de análisis de los conocimientos del profesor de matemáticas. UNIÓN. Revista Iberoamericana de Educación Matemática, 20, 13-31.

Groth, R. & Meletiou-Mavrotheris, M. (2018). Research on statistics teachers’ cognitive and affective characteristics. In D. Ben-Zvi, K. Makar, & J. Garfield (Eds.), International Handbook of Research in Statistics Education (pp. 327-355). Springer.

Groth, R. (2007). Toward a conceptualization of statistical knowledge for teaching. Journal for Research in Mathematics Education, 38(5), 427-437.

Groth, R. (2013). Characterizing key developmental understandings and pedagogically powerful ideas within a statistical knowledge for teaching framework. Mathematical Thinking and Learning, 15(2), 121-145.

Huerta, P. (2018). Preparing teachers for teaching probability through problem solving. En C. Batanero y E. Chernoff (Eds.), Teaching and learning stochastics (ICME-13 Monographs) (pp. 293-311). Springer.

IASE 2023 Satellite Paper – Refereed Ruz, Ubilla & Giaconi

Lee, H., Doerr, H., Tran, D., & Lovett, J. (2016). The role of probability in developing learners’ models of simulation approaches to inference. Statistics Education Research Journal, 15(2), 216-238.

Lee, H. & Hollebrands, K. (2008). Preparing to teach mathematics with technology: An integrated approach to developing Technological Pedagogical Content Knowledge. Contemporary Issues in Technology and Teacher Education, 8(4), 326-341.

MINEDUC & CPEIP. (2021). Estándares de la profesión docente de carreras de pedagogía en matemática para educación media. CPEIP.

MINEDUC (2009). CURRICULUM. Objetivos fundamentales y contenidos mínimos obligatorios de la educación básica y media. MINEDUC.

MINEDUC (2021). Programa de estudio de 3º o 4º medio, Formación diferenciada matemáticas, Probabilidad y estadísticas descriptiva e inferencial. MINEDUC

Pino-Fan, L., Godino, J. D., & Font, V. (2018). Assessing key epistemic features of Didactic- Mathematical Knowledge of prospective teachers: The case of the derivative. Journal of Mathematics Teacher Education, 21, 63-94.

Rossman, A., Medina, E., & Chance, B. (2006). A post-calculus introduction to statistics for future secondary teachers. In Proceedings of the Seventh International Conference on Teaching Statistics, Salvador, Brazil. International Statistical Institute.

Ruz, F., Manriquez, F. y Giaconi, V. (in press). Characterizing the didactic-stochastic knowledge of future mathematics teachers: The case of Chile. Acta Scientiae.

Ruz, F., Martínez, F., Garzón, J., & Contreras, J. M. (2020). Estadística cívica en la sociedad de la información. In T. Sola, J. López, A. Moreno, J. Sola, & S. Pozo (Eds.), Investigación Educativa e Inclusión Retos actuales en la sociedad del siglo XXI (pp. 805-816). Dykinson.

Ruz, F., Molina-Portillo, E., & Contreras, J. M. (2019). Guía de Valorización de la Idoneidad Didáctica de Procesos de Instrucción en Didáctica de la Estadística. Boletim de Educação Matemática, 33(63), 135-154.

Salcedo, A. & Díaz-Levicoy, D. (Eds.) (2022). Formación del profesorado para enseñar estadística: Retos y Oportunidades. Centro de Investigación en Educación Matemática y Estadística, Universidad Católica del Maule, Chile.

Schoenfeld, A. & Kilpatrick, J. (2008). Toward a theory of proficiency in teaching mathematics. In D. Tirosh & T. Wood (Eds.), International handbook of mathematics teacher education (Vol. 2, pp. 321-354). Sense Publishers.

Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-22.

Strutchens, M., Huang, R., Losano, L., Despina, P., Ponte, J., de Costa, M., & Zbiek, R. (2017). The Mathematics Education of Prospective Secondary Teachers Around the World (ICME-13 Topical Surveys). Springer.

Tauber, L. & Pinto, J. (Eds.) (2021). Tendencias y nuevos desafíos de la investigación en Educación Estadística en Latinoamérica. Universidad Nacional del Litoral, Argentina.

Wassong, T. & Biehler, R. (2010). A model for teacher knowledge as a basis for online courses for professional development of statistics teachers. In C. Reading (Ed.), Data and context in statistics education: Towards an evidence-based society. Proceedings of the Eighth International Conference on Teaching Statistics (ICOTS8) (pp. 1-6).

Wassong, T. & Biehler, R. (2014). The use of technology in a mentor teacher course in statistics education. In K. Makar, B. de Sousa, & R. Gould (Eds.), Sustainability in statistics education. Proceedings of the Ninth International Conference on Teaching Statistics (pp. 1-6). ISI/IASE.

Watson, J. M. (2001). Profiling teachers’ competence and confidence to teach particular mathematics topics: The case of chance and data. Journal of Mathematics Teacher Education, 4, 305-337.

Downloads

Published

2024-03-29

Conference Proceedings Volume

Section

Topic 1: Fostering Learning in the Current Data Landscape